期刊文献+

单圈图和双圈图的动态色数 被引量:4

Dynamic chromatic number of unicyclic graphs and bicyclic graphs
下载PDF
导出
摘要 在对单圈图的性质进行分析的基础上,证明了单圈图的动态色数是3或4.构造了双圈图的子图H1和H2,证明了大部分双圈图的动态色数χd(G)=max{χd(H1),χd(H2)}.并给出了一个动态色数不是max{χd(H1),χd(H2)}的双圈图. The dynamic chromatic number of tmicyclic graphs was proved to be 3 or 4 based on the analysis of the property of unicyclic graphs. Then the dynamic chromatic number of most bicyclic graphs was proved to be Χd(G)=max|Χd(H1),Χd(H2)| after the subgraphs H1 and H2 of bicyclic graphs were structured. Finally, a bicyclie graph, was given whose dynamic chromatic number was not max|Χd(H1),Χd(H2)|
作者 秦健 张岩
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2007年第10期37-40,共4页 Journal of Shandong University(Natural Science)
关键词 单圈图 双圈图 动态染色 色数 unicyclic graphs bicyclic graphs dynamic coloring chromatic number
  • 相关文献

参考文献4

  • 1邦迪J A,默蒂U S R.图论及其应用[M].吴望名,李念祖,吴兰芳,等,译.北京:科学出版社,1984. 被引量:5
  • 2LAI H J, MONTGOMERY B, Poon H. Upper bound of dynamic chromatic number[J]. Ars Combinatoria, 2003, 68:193-201. 被引量:1
  • 3MONTGOMERY B. Dynamic Graph Coloring[ D]. Morgantown: West Virginia University, 2001. 被引量:1
  • 4赵新梅,陈祥恩.单圈图的邻强边染色[J].兰州交通大学学报,2005,24(6):138-140. 被引量:4

二级参考文献6

  • 1李敬文,刘君,包世堂,任志国,赵传成,张忠辅.C_m·F_n的邻点可区别边色数[J].兰州交通大学学报,2004,23(4):128-130. 被引量:7
  • 2Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings[J].J of Graph Theory,1997,26:73-82. 被引量:1
  • 3Favaron Odile,Li Hao,Shelp R H.Strong edge-coloring of graphs[J].Discrete Mathematics,1996,159:103-109. 被引量:1
  • 4Zhang Zhongfu,Liu Linzhong,Wang Jianfang.Adjacent strong edge coloring of graphs[J].Applied Mathematics Letters,2002,15:623-626. 被引量:1
  • 5Liu Linzhong,Li Yinzhen,Zhang Zhongfu etc.On the adjacent strong edge coloring of Halin graphs[J].Journal of Mathematical Reaserch & Exposition.2003,2:241-246. 被引量:1
  • 6Bondy J A,Murty U S R.Graph theory with applications[M].New York:Macmillan Press Ltd,1976. 被引量:1

共引文献7

同被引文献20

  • 1董桂香,许振宇.Halin图和Series-Parallel图的动态色数[J].山东科技大学学报(自然科学版),2005,24(1):101-103. 被引量:1
  • 2徐俊明.图论及应用[M].合肥:中国科学技术大学出版社,2004.104-245. 被引量:2
  • 3Bondy J A, Murty U S "R. Graph Theory with Applications[M]. Macmillan: North-Holland Elservie, 1976. 被引量:1
  • 4Montgomery B. Dynamic coloring[D]. West Virginia: West Virginia University, 2001 :25-37. 被引量:1
  • 5Lai H J , Montgomery B, Poon H. Upper bounds of dynamic chromatic number[J]. Ars Combinatoria, 2003,68(3): 193-201. 被引量:1
  • 6Meng X Y, Miao L Y, Su B T,et al. The dynamic coloring numbers of Pseudo-Halin graphs[J]. Ars Combinctoria, 2006, 79:3-10. 被引量:1
  • 7Akbari S, Ghanhari M, Jahanbekam S. On the list dynamic coloring of graphs[J]. Discrete Applied Mathematics, 2009, 157(14), 3005-3007. 被引量:1
  • 8王树禾.图论[M].北京:科学出版社,2009.85-119. 被引量:6
  • 9J.A Bondy,USA Murty.Graph Theory with Applications[M].North-Holland Elsevrer,1976. 被引量:1
  • 10B.Montgomery,Dynamic Coloring[D].Ph.D.Dissertation,West Virgima University,25 (2001),25-37. 被引量:1

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部