期刊文献+

一种用于多足步行机器人步态控制的CPG模型 被引量:2

A CPG model of multi-legged walking robot gait controlling
下载PDF
导出
摘要 基于对生物节律性周期运动的CPG控制的概念,采用Lakshmanan和Murali的双变量简化Hodgkin-Huxley振荡神经元模型作为CPG的振子。对该模型进行了不动点及稳定性分析和分岔分析,指出了其二次Hopf分岔特性和振荡条件。在此基础上,建立了一种用于八足步行机器人步态控制的CPG模型。通过分阶段遗传算法,分别针对几种步态进行了参数优化,通过仿真验证了所提出的CPG模型的可行性。 Based on the anatomy fact that the rhythmic motor pattern is controlled by CPG function modular, the conception of CPG control in multi-legged gait is presented. Neuraxon' s nonlinear oscillation model given by Lakshmanan and Murali is analyzed, Hopf bifurcation phenomenon and effects of parameters on its oscillation behavior are discussed. A CPG model for multi-legged walking robot' s gait control is made by adopting the neuron oscillator, parameters of the model is optimized by using multi-stage genetic algorithm and some gaits are generated using this model by simulation. Simulation result proved the constructed CPG model is feasible.
作者 袁鹏
出处 《制造业自动化》 北大核心 2007年第10期34-39,共6页 Manufacturing Automation
关键词 CPG 步态 多足步行机器人 CPG gait multi-legged walking robot
  • 相关文献

参考文献13

  • 1KAREN L, SARAH D, GARY P. Gait evolution for a hexapod robot[A]. Proceedings of the 4th International Symposium on Soft Computing and Intelligent Systems for Industry (SOCO / ISFI 2001 )[C]. June 2001. 被引量:1
  • 2KLAVINS E, KODITSCHEK D E, GHRIST R. Toward the regulation and composition of cyclic behaviorst[A]. 4th International Workshop on Algorithmic Foundations of Robotics, Dartmouth College, NH, March 2000[C]. 被引量:1
  • 3HIROSHI K, YASUHIRO F, YOSHIRO H, KUNIKATSU T, Three-dimensional Adaptive Dynamic Walking of a Quadrupedrolling motion feedback to CPGs controlling pitching motion, Proc. of IEEE Robotics and Automation (ICRA2002), Washington D.C., 2002:2228-2233. 被引量:1
  • 4LUO Z W, ODASHIMA T, ASANO F, HOSOE S. On recent bio-mimetic studies of legged locomotion- diversity, adaptability and energy consumption for hexapod, quadruped and Biped[A]. Proc. of the 2nd International Symposium on Adaptive of Animals and Machines[C]. Kyoto, Mar. 2003-5- 15. 被引量:1
  • 5KUNICHIKA T, TETSUYA Y, KAZUYUKI A, HIROSHI K. Bifurcation in Morris-Lecar. Neuron Model[A]. Proc. of the International Symposium on Nonlinear Theory and Its Applications[C]. Xi'an, PRC. Oct,7,2002 被引量:1
  • 6HIROFUMI N. Generation and transitions of phase-locked oscillations in coupled neural oscillators[A]. Proceeding of World Multiconference on Systemics, Cybernetics and Informatics SCI2001/ISAS2001 [C]. 2001. 被引量:1
  • 7LAKSHMANAN M, MURALI K. Chaos in nonlinear oscillators[J]. Singapore: World Scientific, 1996. 被引量:1
  • 8廖晓峰,吴中福,王康,虞厥邦.带分布时延神经网络:从稳定到振荡再到稳定的动力学现象[J].电子与信息学报,2001,23(7):687-692. 被引量:3
  • 9王炎,廖晓峰,吴中福,虞厥邦.一个带时延神经网络的分岔现象研究[J].电子科学学刊,2000,22(6):972-977. 被引量:6
  • 10AUKE J I, JOHN H, DAVID W, Evolution of a central pattern generator for the swimming and trotting gaits of the salamander[A]. Proceedings of the 3rd International Conference on Computational Intelligence & Neurosciences[C]. 1998. 被引量:1

二级参考文献14

  • 1[1]B. Baldi, A. F. Atiya, How delays affect neural dynamical thresholds with delays, IEEE Trans.on Neural Networks, 1994, 5(4), 612-621. 被引量:1
  • 2[2]K. Gopalsmay, Issic K. C. Leung, Convergence under dynamical thresholds with delays, IEEETrans. on Neural Networks, 1994, 8(2), 341-348. 被引量:1
  • 3[3]K. Gopalsmay, X. Z. He, Stability in asymmetric Hopfield net with transmission delays, PhysicaD, 1994, 76(5), 344-358. 被引量:1
  • 4[4]C.M. Marcus, R. M. Westervelt, Stability of analog neural networks with delay, Phys. Rev. A 1994, 39(7), 347 359. 被引量:1
  • 5[5]Xiaofeng Liao, Juebang Yu, Qualitative analysis of bi-directional associative memory with time delay, International Journal of Circuit Theory and Application, 1998, 26(7), 219 229. 被引量:1
  • 6[6]Xiaofeng Liao, Juebang Yu, Robust interval stability analysis for Hopfield with time delay, IEEE Trans. on Neural Networks, 1998, 9(5), 1042-1046. 被引量:1
  • 7[7]Xiaofeng Liao, et al, Hopf bifurcation and stability of periodic solutions of a neural network with a continuously distributed delay, International Symposium 9n Signal Processing and Intelligence system, 1999, 214-218. 被引量:1
  • 8[8]Xiaofeng Liao, Kwok-wo Wong, Zhongfu Wu, Bifurcation analysis in a two-neuron system with distributed delays, Physica D, 2001, 179(1-2), 125-141. 被引量:1
  • 9Liao X F,International Journal of Circuit Theory and Applications,1998年,26卷,2期,219页 被引量:1
  • 10Liao X,Journal of Electron,1997年,14卷,4期,345页 被引量:1

共引文献6

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部