期刊文献+

A novel hyperchaos evolved from three dimensional modified Lorenz chaotic system 被引量:3

A novel hyperchaos evolved from three dimensional modified Lorenz chaotic system
下载PDF
导出
摘要 This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. By numerical simulating, this paper verifies that the four-dimensional system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic behaviours. And the new dynamical system is hyperchaotic in a large region. In comparison with other known hyperchaos, the two positive Lyapunov exponents of the new system are relatively more larger. Thus it has more complex degree. This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. By numerical simulating, this paper verifies that the four-dimensional system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic behaviours. And the new dynamical system is hyperchaotic in a large region. In comparison with other known hyperchaos, the two positive Lyapunov exponents of the new system are relatively more larger. Thus it has more complex degree.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3238-3243,共6页 中国物理B(英文版)
基金 Project supported by the National Nature Science Foundation of China (Grant No 60574036), the Specialized Research Fund for the Doctoral Program of China (Grant No 20050055013) and the Program for New Excellent Talents in University of China (NCET).
关键词 CHAOS HYPERCHAOS four dimension chaos system Lyapunov exponent bifurcation diagram chaos, hyperchaos, four dimension chaos system, Lyapunov exponent, bifurcation diagram
  • 相关文献

参考文献32

  • 1Lorenz E N 1963 J. Atmos. Sci. 20 130 被引量:1
  • 2Rossler O E 1976 Phys. Lett. A 57 397 被引量:1
  • 3Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465 被引量:1
  • 4Lu J H and Chen G R 2002 Int. J. Bifur, Chaos 12 659 被引量:1
  • 5Wang F Q and Liu C X 2006 Acta Phys. Sin. 55 5061 被引量:1
  • 6Yu S M, Lin Q H and QiuS S 2004 Acta Phys. Sin. 53 2084 被引量:1
  • 7Wang G Y, Qiu S S and Xu Z Y 2006 Acta Phys. Sin. 55 3295 被引量:1
  • 8Wang J Z, Chen Z Q and Yuan Z Z 2006 Acta Phys. Sin. 55 3956 被引量:1
  • 9Zhang Y H, Qi G Y, Liu W L and Yan Y 2006 Acta Phys. Sin. 55 3307 被引量:1
  • 10Qi G Y, Chen G R, Du S Z, Chen Z Q and Yuan Z Z 2005 Physica A 352 295 被引量:1

同被引文献17

  • 1王杰智,陈增强,袁著祉.一个新的混沌系统及其性质研究[J].物理学报,2006,55(8):3956-3963. 被引量:54
  • 2Chen G,Dong X.From Chaos to Order:Methodologies,Perspectives and Applications[M].Singapore:World Scientific,1998. 被引量:1
  • 3Lorenz EN.Deterministic nonperiodic flow[J].Journal of Atmospheric Science,1963,20(2):130-141. 被引量:1
  • 4Chen G,Ueta T.Yet another chaotic attractor[J].International Journal of Bifurcation and Chaos,1999,9(7):1465-1466. 被引量:1
  • 5Lü J,Chen G.A new chaotic attractor coined[J].International Journal of Bifurcation and Chaos,2002,12(3):659-661. 被引量:1
  • 6Qi G,Chen G,Du S,et al.Analysis of a new chaotic system[J].Physica A,2005,352(2):295-308. 被引量:1
  • 7Liu C,Liu T,Liu L,et al.A new chaotic attractor[J].Chaos,Solitons & Fractals,2004,22(5):1031-1038. 被引量:1
  • 8Chen Z,Yang Y,Qi G,et al.A novel hyperchaos system only with one equilibrium[J].Physics Letters A,2007,360(6):696-701. 被引量:1
  • 9Zheng P S,Tang W S,Zhang J X.Some novel double-scroll chaotic attractors in Hopfield networks[J].Neurocomputing,2010,73(10):2280-2285. 被引量:1
  • 10Zhang J X,Tang W S.Analysis and control for a new chaotic system via piecewise linear feedback[J].Chaos Solitons &Fractals,2009,42(4):2181-2190. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部