摘要
This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. By numerical simulating, this paper verifies that the four-dimensional system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic behaviours. And the new dynamical system is hyperchaotic in a large region. In comparison with other known hyperchaos, the two positive Lyapunov exponents of the new system are relatively more larger. Thus it has more complex degree.
This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. By numerical simulating, this paper verifies that the four-dimensional system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic behaviours. And the new dynamical system is hyperchaotic in a large region. In comparison with other known hyperchaos, the two positive Lyapunov exponents of the new system are relatively more larger. Thus it has more complex degree.
基金
Project supported by the National Nature Science Foundation of China (Grant No 60574036), the Specialized Research Fund for the Doctoral Program of China (Grant No 20050055013) and the Program for New Excellent Talents in University of China (NCET).