期刊文献+

Analysis of Aberrations in Laser-Focused Nanofabrication

Analysis of Aberrations in Laser-Focused Nanofabrication
下载PDF
导出
摘要 Based on the semi-classical model, we analyse the motion equation of chromium atoms in the laser standing wave field under the condition of low intensity light field using fourth-order Adams-Moulton algorithm. The trajectory of the atoms is obtained in the standing wave field by analytical simulation. The image distortion coming from aberrations is analysed and the effects on focal beam features are also discussed. Besides these influences, we also discuss the effects on contrast as well as the feature width of the atomic beam due to laser power and laser beam waist. The simulation results have shown that source imperfection, especially the transverse velocity spread, plays a critical role in broadening the feature width. Based on these analyse, we present some suggestions to minimize these influences. Based on the semi-classical model, we analyse the motion equation of chromium atoms in the laser standing wave field under the condition of low intensity light field using fourth-order Adams-Moulton algorithm. The trajectory of the atoms is obtained in the standing wave field by analytical simulation. The image distortion coming from aberrations is analysed and the effects on focal beam features are also discussed. Besides these influences, we also discuss the effects on contrast as well as the feature width of the atomic beam due to laser power and laser beam waist. The simulation results have shown that source imperfection, especially the transverse velocity spread, plays a critical role in broadening the feature width. Based on these analyse, we present some suggestions to minimize these influences.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第7期1890-1893,共4页 中国物理快报(英文版)
关键词 NEUTRAL-ATOM LITHOGRAPHY STANDING-WAVE LIGHT DEPOSITION BEAM NEUTRAL-ATOM LITHOGRAPHY STANDING-WAVE LIGHT DEPOSITION BEAM
  • 相关文献

参考文献21

  • 1Drodofsky U, Drewsen M, Pfau T, Nowack S and Mlynek J 1996 Microelectron. Engin. 30 383 被引量:1
  • 2Jurdik E, Hohlfeld J, Kempen H and Rasing T 2002 Appl. Phys. Lett. 23 4443 被引量:1
  • 3Timp G, Behringer R E, Tennant D M and Cunningham J E 1992 Phys. Rev. Lett. 69 1636 被引量:1
  • 4McClelland J J, Behringer R E and Tennant D M 1993 Science 262 877 被引量:1
  • 5Gupta R, McClelland J J and Marte P 1995 Appl. Phys. Lett. 67 1378 被引量:1
  • 6Schulze T, Brezger B, Schmidt P O, Mertens R, Bell A S, Pfau T and Mlynek J 1999 Microelectron. Engin. 46 105 被引量:1
  • 7Ohmukai R, Urabe S and Watanabe M 2003 Appl. Phys. B 77 415 被引量:1
  • 8Sligte E, Smeets B, Stam K M R, Herfst R W, Straten P, Beijerinck H C W and Leeuwen K A H 2004 Appl. Phys. Lett. 85 4493 被引量:1
  • 9Fioretti A, Camposeo A, Tantussi F, Arimondo E, Gozzini S and Gabbanini C 2005 Appl. Surf. Sci. 248 196 被引量:1
  • 10Berggren K.K, Prentiss M, Timp G L and Behringer R E 1994 J. Opt. Soc. Am. B 11 1166 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部