期刊文献+

Linearization of Systems of Nonlinear Diffusion Equations

Linearization of Systems of Nonlinear Diffusion Equations
下载PDF
导出
摘要 We investigate the linearization of systems of n-component nonlinear diffusion equations; such systems have physical applications in soil science, mathematical biology and invariant curve flows. Equivalence transformations of their auxiliary systems are used to identify the systems that can be linearized. We also provide several examples of systems with two-component equations, and show how to linearize them by nonlocal mappings. We investigate the linearization of systems of n-component nonlinear diffusion equations; such systems have physical applications in soil science, mathematical biology and invariant curve flows. Equivalence transformations of their auxiliary systems are used to identify the systems that can be linearized. We also provide several examples of systems with two-component equations, and show how to linearize them by nonlocal mappings.
作者 康静 屈长征
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第9期2467-2470,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 10671156, and the Programme for New Century Excellent Talents in University (NCET-04-0968).
关键词 POTENTIAL SYMMETRIES CONVECTION EQUATIONS COUPLED DIFFUSION CLASSIFICATION POTENTIAL SYMMETRIES CONVECTION EQUATIONS COUPLED DIFFUSION CLASSIFICATION
  • 相关文献

参考文献13

  • 1Wiltshire R J 1994 J. Phys. A: Math. Gen. 27 7821. 被引量:1
  • 2Baikov V A, Gladkov A V and Wiltshire R J 1998 J. Phys. A: Math. Gen. 31 7483. 被引量:1
  • 3Chapman S J and Richardson G 1995 SIAM J. Appl. Math. 55 1275. 被引量:1
  • 4Sophocleous C and Wiltshire R J 2006 Symmetry, Integrability and Geometry: Methods and Applications vol 2 paper 004. 被引量:1
  • 5Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic). 被引量:1
  • 6Ibragimov N H, Torrisi M and Valenti A 1991 J. Math. phys. 32 2988. 被引量:1
  • 7Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Springer). 被引量:1
  • 8Qu C Z 2007 J.Phys.A:Math.Theor.40 1757. 被引量:1
  • 9Sophocleous C and Wiltshire R J 2006 Phys. A 370 329. 被引量:1
  • 10Kang J and Qu C Z 2007 Commun. Theor. Phys. (accepted). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部