期刊文献+

Bridging Atomistic/Continuum Scales in Solids with Moving Dislocations 被引量:1

Bridging Atomistic/Continuum Scales in Solids with Moving Dislocations
下载PDF
导出
摘要 We propose a multiscale method for simulating solids with moving dislocations. Away from atomistic subdomains where the atomistic dynamics are fully resolved, a dislocation is represented by a localized jump profile, superposed on a defect-free field. We assign a thin relay zone around an atomistic subdomain to detect the dislocation profile and its propagation speed at a selected relay time. The detection technique utilizes a lattice time history integral treatment. After the relay, an atomistic computation is performed only for the defect-free field. The method allows one to effectively absorb the fine scale fluctuations and the dynamic dislocations at the interface between the atomistic and continuum domains. In the surrounding region, a coarse grid computation is adequate. We propose a multiscale method for simulating solids with moving dislocations. Away from atomistic subdomains where the atomistic dynamics are fully resolved, a dislocation is represented by a localized jump profile, superposed on a defect-free field. We assign a thin relay zone around an atomistic subdomain to detect the dislocation profile and its propagation speed at a selected relay time. The detection technique utilizes a lattice time history integral treatment. After the relay, an atomistic computation is performed only for the defect-free field. The method allows one to effectively absorb the fine scale fluctuations and the dynamic dislocations at the interface between the atomistic and continuum domains. In the surrounding region, a coarse grid computation is adequate.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第1期161-164,共4页 中国物理快报(英文版)
  • 相关文献

参考文献20

  • 1van der Giessen E and Needleman A 1995 Model. Simul. Mater. Sci. Eng. 3 689 被引量:1
  • 2Hao S, Liu W and Weertman J 2004 Phil. Magn. 84 1067 被引量:1
  • 3Bulatov V and Cai W 2002 Phys. Rev. Lett. 89 115501 被引量:1
  • 4Li J, van Vliet K, Zhu T, Yip S and Suresh S 2002 Nature 418 307 被引量:1
  • 5Landman U, Ludtke W, Burnham N and Colton R 1990 Science 248 454 被引量:1
  • 6Rieth M and Schommers W 2005 Handbook of Theoretical and Computational Nanotechnology (Stevenson Ranch, CA: American Scientific Publishers) 被引量:1
  • 7Liu W K, Karpov E G, Zhang S and Park H S 2004 Comp. Meth. Appl. Mech. Eng. 193 1529 被引量:1
  • 8Liu W K, Karpov E G and Park H S 2005 Nano Mechanics and Materials: Theory, Multiscale Methods and Applications (New York: Wiley) 被引量:1
  • 9Abraham F et al 1998 Comput. Phys. 12 538 被引量:1
  • 10Cai W, de Koning M, Bulatov V and Yip S 2000 Phys. Rev. Lett. 85 3213 被引量:1

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部