期刊文献+

环的幂等元与素谱的开闭集 被引量:4

Idempotents of Rings and Clopen Sets of Spectra
下载PDF
导出
摘要 设R是任意带单位元的结合环,L(R)表示Levitzki根,左素理想谱specl(R)是一个弱Zariski拓扑空间。本文主要研究所有包含L(R)的左素理想谱Sl(R)的正规性与环的Gelfand性、Sl(R)的开闭集与环的幂等元的关系。证明了:设R是任意环,对任意Sl(R)的开闭集U,都存在环R一个幂等元e,使得U=Ul(Re)∩Sl(R)。 Let R be any associative ring with identity, specl ( R ) the set of all left prime ideals of R, L ( R ) Levitzki Radical and Sl (R) the set of all left prime ideals containing L ( R ). Then specl ( R ) is a space with weak Zariski topology. In this paper, the relationships of Sl ( R )' s normality and Gelfand rings, and of clopen sets in Sl (R) and idempotents in R, will be studied. It is proved that, for any ring R and any clopen set ∪ of Sl( R ), there is an idempotent e∈ R such that ∪= ∪l(Re)∩ Sl(R).
出处 《金陵科技学院学报》 2007年第3期5-8,共4页 Journal of Jinling Institute of Technology
基金 国家自然科学基金(10671137和10626012) 江苏省高校自然科学基金(06kjd110068)资助
关键词 Levitzki根 Levitzki谱 幂等元 开闭集 Levitzki Radical Levitzki spectra idempotent clopen set
  • 相关文献

参考文献11

  • 1[1]ZHANG Guo-yin,TONG Wen-ting and WANG Fang-gui.Spectrum of a Noncommutative Ring[J].Comm.Algebra,2006,34(8):2795-2810 被引量:1
  • 2[2]ZHANG Guo-yin,WANG Fang-gui and Xu Wen-bing.Gelfand Factor Rings and Weak Zariski Topologies[J].Comm.Algebra,2007,35(8):2628-2645 被引量:1
  • 3张国印.GELFAND商环和正规素谱[J].金陵科技学院学报,2007,23(2):1-4. 被引量:5
  • 4[4]Demarco G,Orsatti A.Commutative Rings in which Every Prime Ideal Is Contained in a Unique Maximal Ideal[J].Proc.Amer.Math.Soc.,1971,30(3):459-466 被引量:1
  • 5[5]Sun S.H.Rings in which Every Prime Ideal Is Contained in a Unique Maximal right Ideal[J].J.of Pure and Applied Algebra,1992,78:183-194 被引量:1
  • 6[6]McDonald B R.Linear Algebra Over Commutative Rings[M].New York and Basel:Marcel Dekker,Inc.,1984 被引量:1
  • 7[7]刘绍学.环与代数[M],北京:科学出版社,2001:114-192 被引量:3
  • 8[8]Rosenberg A.L.Noncommutative Algebraic Geometry and Representations of Quantized Algebras[M].Dordrecht,Boston and London:Kluwer Academic Publishers,1995 被引量:1
  • 9[9]Marks G.A taxonomy of 2-primal rings[J].J.Algebra,2003,266:494-520 被引量:1
  • 10[10]Borceux F,Van den Bossche G.Algebra in a Localic Topos with Applications to Ring Theory.Lecture Notes in Mathematics 1038[M].New York:Springer-Verlag,1983 被引量:1

二级参考文献13

  • 1张国印.拓扑模的谱[J].金陵科技学院学报,2006,22(3):5-8. 被引量:2
  • 2张国印.单列模与拓扑模[J].金陵科技学院学报,2006,22(2):1-4. 被引量:5
  • 3[1]ZHANG Guo-yin,TONG Wen-ting,WANG Fang-gui.Spectrum of a Noncommutative Ring[J].Comm.Algebra,2006,34(8):2795-2810. 被引量:1
  • 4[2]ZHANG Guo-yin,TONG Wen-ting,WANG Fang-gui.Spectra of Maximal 1-sided Ideals and Primitive Ideals[J].Comm.Algebra,2006,34(8):2879-2896. 被引量:1
  • 5[3]Demarco G,Orsatti A.Commutative Rings in Which Every Prime Ideal Is Contained in a Unique Maximal Ideal[J].Proc.Amer.Math.Soc.,1971,30(3):459-466. 被引量:1
  • 6[4]Sun S H.Rings in which Every Prime Ideal Is Contained in a Unique Maximal right Ideal[J].J.of Pure and Applied Algebra,1992,78:183-194. 被引量:1
  • 7[5]SunS H.Noncommutative rings in which every prime ideal is contained in a unique maximal ideal[J].J.of Pure and Applied Algebra,1991,76:179-192. 被引量:1
  • 8[9]McDonald B R.Linear Algebra Over Commutative Rings[M].New York and Basel:Marcel Dekker Inc.,1984. 被引量:1
  • 9[10]Dauns J.Primal modules[J].Comm.Algebra,1997,25,(8):2409-2435. 被引量:1
  • 10[11]Borceux F,Van den Bossche G.Algebra in a Localic Topos with Applications to Ring Theory.Lecture Notes in Mathematics 1038[M].New York:Springer-Verlag,1983. 被引量:1

共引文献6

同被引文献36

  • 1张国印.拓扑模的谱[J].金陵科技学院学报,2006,22(3):5-8. 被引量:2
  • 2张国印.单列模与拓扑模[J].金陵科技学院学报,2006,22(2):1-4. 被引量:5
  • 3张国印.GELFAND商环和正规素谱[J].金陵科技学院学报,2007,23(2):1-4. 被引量:5
  • 4[1]ZHANG Guo-yin,TONG Wen-ring and WANG Fang-gui.Spectra of Maximal 1-sided Ideals and Primitive Ideals[J].Comm.Algebra,2006,34(8):2879-2896 被引量:1
  • 5[2]ZHANG Guo-yin,TONG Wen-ting and WANG Fang-gui.Spectrum of a Noncommntative Ring[J].Comm.Algebra,2006,34(8):2795-2810 被引量:1
  • 6[3]ZHANG Guo-yin,WANG Fang-gui and Xu Wen-bing.Gelfand Factor Rings and Weak Zariski Topologies[J].Comm.Algebra,2007,35(8):2628-2645 被引量:1
  • 7[6]Rosenberg A L.Noncommutative Algebraic Geometry and Representations of Quantized Algebras[M].Dordrecht,Boston and London:Kluwer Academic Publishers,1995 被引量:1
  • 8[7]Demarco G,Orsatti A.Commutative Rings in which Every Prime Ideal Is Contained in a Unique Maximal Ideal[J].Proc.Amer.Math.Soc.,1971,30(3):459-466 被引量:1
  • 9[8]Sun S H.Rings in which Every Prime Ideal Is Contained in a Unique Maximal right Ideal[J].J.of Pure and Applied Algebra,1992,78:183-194 被引量:1
  • 10[9]Sun S H.Noncommutative rings in which every prime ideal is contained in a unique maximal ideal[J].J.of Pure and Applied Algebra,1991,76:179-192 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部