期刊文献+

基于GEP和GA技术的非线性系统辨识研究 被引量:1

Nonlinear System Identification Based on GEP and GA Techniques
下载PDF
导出
摘要 给出了利用基因表达式编程(GEP)进行非线性系统辨识的方法,弥补了传统辨识方法需要过多预知信息的不足,有着比遗传编程(GP)更简洁有效的系统模型结构表达方式.利用改进的遗传算法(GA)并行地进行模型参数进化,可以在有限的给定数据内得到合适的模型.关于模型适应度的定义,综合考虑了精确性和复杂性因素,能够获取一种比较折中的辨识结果.仿真结果表明,这种方式可以快速、准确地获取非线性模型.  A method based on gene expression programming(GEP) for identifying the nonlinear system model is presented,which makes up the insufficiency that traditional identification methods need much a priori information,and has a tidier and more efficient system model expression mode than genetic programming(GP).It uses the improved genetic algorithm(GA) to carry out the model parameter evolution in a parallel mode,and the appropriate models can be obtained with limited given data.The definition of model fitness considers fully the accuracy and complicacy factors,and can get a trade-off identification solution.The simulation result indicates that the presented method can obtain nonlinear model in a quick and accurate way.
出处 《信息与控制》 CSCD 北大核心 2007年第5期592-596,603,共6页 Information and Control
关键词 基因表达式编程 遗传算法 非线性系统 系统辨识 多目标优化 NARMAX模型 gene expression programming(GEP) genetic algorithm(GA) nonlinear system system identification multi-objective optimization NARMAX model
  • 相关文献

参考文献13

  • 1Leontaritis I J,Billings S A.Input-output parametric models for non-linear systems.Part Ⅰ:Deterministic non-linear systems[J].International Journal of Control,1985,41 (2):1991-2008. 被引量:1
  • 2Chen S,Billings S A.Representations of non-linear systems:The NARMAX model[J].International Journal of Control,1989,49(3):1013-1032. 被引量:1
  • 3王晓,韩崇昭,万百五.两种新的有效的非线性系统最小二乘辨识算法[J].自动化学报,1998,24(1):95-101. 被引量:3
  • 4王晓,谢剑英,贾青.非线性NARMAX模型结构与参数一体化辨识的改进算法[J].信息与控制,2000,29(2):102-110. 被引量:10
  • 5South M,Bancroft C,Willis M J,et al.System identification via genetic programming[A].Proceedings of the 1996 UKACC International Conference on Control[C].Stevenage,UK:IEE,1996.912-917. 被引量:1
  • 6Rodriguez-Vazquez K,Fleming P J.Multi-objective genetic programming for nonlinear system identification[J].Electronics Letters,1998,34(9):930-931. 被引量:1
  • 7Rodriguez-Vazquez K,Fonseca C M,Fleming P J.Identifying the structure of nonLinear dynamic systems using multiobjective genetic programming[J].IEEE Transactions on Systems,Man,and Cybernetics,Part A:Systems and Humans,2004,34 (4):531-545. 被引量:1
  • 8Beligiannis G N,Skarlas L V,Likothanassis S D,et al.Nonlinear model structure identification of complex biomedical data using a genetic-programming-based technique[J].IEEE Transactions on Instrumentation and Measurement,2005,54 (6):2184-2190. 被引量:1
  • 9Ferreira C.Gene expression programming:A new adaptive algorithm for solving problems[J].Complex Systems,2001,13(2):87-129. 被引量:1
  • 10郑力新,周凯汀,王华珍,王永初.遗传算法技术在控制系统模型辨识中的应用[J].自动化仪表,2002,23(4):11-14. 被引量:2

二级参考文献25

  • 1朱全民.非线性系统辨识[J].控制理论与应用,1994,11(6):641-652. 被引量:18
  • 2徐柏龄,魏勇.采用全面最小二乘法测量开口箱扬声器系统低频特性参数[J].声学学报,1996,21(3):241-247. 被引量:4
  • 3[1]Hyun J H, Lee C O. Optimization of feedback gains for a hydraulic servo system by genetic algorithms. Proc Instn Mech Engrs, 1998, 212, Part 1:395~401 被引量:1
  • 4[2]Wang p. and Kwok D. B. Optimal design of PID process controllers based on genetic algorithms. Control Engng. Practice, 1994, 2(4):641~648 被引量:1
  • 5[3]Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor, Michigan:University of Michigan Press, 1975 被引量:1
  • 6[4]Hollstien R B. Artificial genetic adaptation in computer control systems (Doctoral dissertation, University of Michigan). Diss. Abstr. Int, 1971, 32(3):1510B 被引量:1
  • 7[5]DeJon K. An analysis of the behavior of a class of genetic adaptive systems (Doctoral dissertation, University of Michigan). Diss. Abstr. Int, 1975, 36(10):5140B 被引量:1
  • 8[6]Thomas Back, et al. Evolutionary Computation:Comments on the History and Current State. IEEE Transactions on Evolutionary Computation, 1997, 1(1):3~17 被引量:1
  • 9[7]Helena Szczerbicka and Matthias Becker. Genetic Algorithms:A tool for modeling, simulation and optimization of complex systems. Cybernetics and Systems:An International Journal, 1998, 29:639~659 被引量:1
  • 10[8]Kristinsson K and Dumont. GA system identification and control using genetic algorithm. IEEE Trans. Systems. Man and Cybernetics, 1992, 22(5):1033~1046 被引量:1

共引文献86

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部