期刊文献+

基于聚类树方法的同调机组分群研究

Study on Coherency Identification of Generating Sets Based on Clustering-tree Method
下载PDF
导出
摘要 随着WAMS系统的广泛应用,功角量测数据为基于轨迹的同调机组分群研究提供了可靠的数据支持。利用聚类方法人为因素干扰小、自适应能力强的优点,提出了一种基于EMD的聚类树分群方法。该方法建立在系统聚类分析的基础上,以各机受扰轨迹之差的信号能量最小为聚类准则,可以实现多机系统的动态分群。为解决电力系统受扰后动态轨迹非平稳、非线性问题,采用EMD预处理方法,实现原始数据的高频滤波和平稳化处理。EPRI-36节点系统和新英格兰10机39节点系统的算例分析证明,在网络拓扑结构基本不变的情况下,不同扰动方式下聚类分群结果总体上一致,从而佐证了该方法的有效性。  With the application of the Wide Area Measure System(WAMS),the mass data of phase-swing curves is sufficiently supporting the study on coherency identification of power generation sets.Because of the ability of anti-disturbance and self-adaptive,the clustering-tree method for coherency identification based on Empirical Mode Decomposition(EMD) is put forward.The method can realize dynamic coherency identification for multiple sets on the basis of system clustering analysis,taking the clustering principle of minimum signal energy of disturbance trace.In order to solve the problems of non-stable and non-linear of electric system after disturbance,a new approach to data pretreatment which is called EMD is used to realize high-frequency filter and stabilization of original data.Case studies of New England 10-machine 39-bus system and EPRI 36-bus system show that the coherency identification results are consistent with different disturbance modes for the same topology structure,which indicates that the method is effective.
出处 《中国农村水利水电》 北大核心 2007年第10期112-116,118,共6页 China Rural Water and Hydropower
基金 国家自然科学基金资助项目(50577004)
关键词 功角轨迹 聚类 分群 EMD分解 phase-swing curves clustering-tree coherency identification empirical mode decomposition(EMD)
  • 相关文献

参考文献7

二级参考文献36

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部