期刊文献+

含裂纹梁自由振动分析 被引量:12

Analysis on the free vibration of cracked beams
下载PDF
导出
摘要 研究了含常开裂纹矩形截面梁的自由振动问题。通过一计及裂纹对梁局部柔度影响的无质量扭簧模拟裂纹所在截面,建立起与含裂纹梁等效的力学模型;基于完整梁自由振动方程的基本解,推导出含裂纹梁的传递矩阵;以简支梁和悬臂梁为例,结合具体的边界条件,导出它们相应的频率方程。基于泰勒展开,给出了求解该频率方程的一种迭代算法。该文的方法能够简便地计算含裂纹梁的固有频率。 The free vibration problems of slender prismatic beam with a single opening crack are studied. An equivalent mechanics model of the cracked beam is established through modelling the cracked section by a massless rotational spring taking into account the effects of the crack on the local flexibility. Based on the fundamental solutions of the free vibration equation of intact beam,the transfer matrix of the cracked beam is obtained.The frequency equations of the simply supported beam and cantilever beam are given. An iteration procedure for solving the derived frequency equations is presented.The method proposed in this paper is efficient in calculating the natural frequencies of the cracked beams.
出处 《船舶力学》 EI 北大核心 2007年第5期798-803,共6页 Journal of Ship Mechanics
关键词 裂纹 振动 固有频率 beam crack vibration natural frequency
  • 相关文献

参考文献13

  • 1张敬芬,赵德有.工程结构裂纹损伤振动诊断的发展现状和展望[J].振动与冲击,2002,21(4):22-26. 被引量:59
  • 2Gounarisa G D,Papadopoulos C A.Crack identification in rotating shafts by coupled response measurements[J].Engineering Fracture Mechanics,2002,69:339-352. 被引量:1
  • 3Rizos P,Aspragathos N,Dimarogonas A.Identification of crack location and magnitude in a cantilever beam from the vibration modes[J].Journal of Sound and Vibration,1990,138:381-388. 被引量:1
  • 4李兵,陈雪峰,胡桥,何正嘉.基于小波有限元的悬臂梁裂纹识别[J].振动工程学报,2004,17(2):159-164. 被引量:22
  • 5Shifrin E I,Ruotolo R.Natural frequencies of a beam with an arbitrary number of cracks[J].Journal of Sound and Vibration,1999,222:409-423. 被引量:1
  • 6Zheng D Y,Fan S C.Natural frequencies of a non-uniform beam with multiple cracks via modified Fourier serie[J].Journal of Sound and Vibration,2001,242(4):701-717. 被引量:1
  • 7Zheng D Y,Fan S C.Natural frequency changes of a cracked Timoshenko beam by modified Fourier series[J].Journal of Sound and Vibration,2001,246(2):297-317. 被引量:1
  • 8Bamnios Y.Douka E,Trochidis A.Crack identification in beam structures using mechanical impedance[J].Journal of Sound and Vibration,2002,256(2):287-297. 被引量:1
  • 9Fernandez-Saez J,Rubio L,Navarro C.Approximate calculation of the fundamental frequency for bending vibrations of cracked beams[J].Journal of Sound and Vibration,1999,225(2):345-352. 被引量:1
  • 10Khiem N T,Lien T V.A simplified method for natural frequency analysis of a multiple cracked beam[J].Journal of Sound and Vibration,2001,245(4):737-751. 被引量:1

二级参考文献61

  • 1杨英杰,虞和济.结构损伤状态识别的神经网络方法[J].东北大学学报(自然科学版),1994,15(2):210-214. 被引量:13
  • 2费斌军,童明波,刘文廷.含多裂纹结构的概率损伤容限评定方法[J].航空学报,1995,16(2):137-142. 被引量:8
  • 3焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996.. 被引量:115
  • 4何正嘉,訾艳阳等.机械设备非平稳信号的故障诊断原理及应用.北京:高等教育出版社,2001:1-7,66-77 被引量:1
  • 5Chaudhari T D, Maiti S T. A study of vibration of geometrically segmented beams with and without crack. International Journal of Solid and Structures, 2000; 37:761-779 被引量:1
  • 6Lele S P, Maiti S K. Modelling of transverse vibration of short beams for crack detection and measurement of crack extension. Journal of Sound and Vibration, 2002;257 (3): 559-583 被引量:1
  • 7Alam, Md Rabiul. Crack identification in an offshore structural frame through static substructuring and finite element method. Memorial University of Newfoundland, 2001 被引量:1
  • 8哈宽富.断裂物理基础.北京:科学出版社,2000:11-29 被引量:1
  • 9Kardestuncer H编.有限元法手册.诸德超等译.北京:科学出版社,1 996:545-597 被引量:1
  • 10Ma J X, Xue J J, YangS J, et al. A study of the construction and application of a Daubechies wavelet-based beam element. Finite Element in Analysis and Design,2003; 39 (10): 965-975 被引量:1

共引文献69

同被引文献79

引证文献12

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部