期刊文献+

求解动态车辆路径问题的演化蚁群算法 被引量:5

A Mixed Evolutionary Ant Algorithm for the Dynamic Vechicle Routing Problem
下载PDF
导出
摘要 在Evo-Ant算法的基础上提出了多目标的算法,即利用Evo-Ant算法来产生新的解,并利用一个额外的存储空间来存放Pareto候选解,用新产生的解来更新Pareto候选解,消除被支配的解,依次循环,从而得到近似的Pareto解.为了验证演化蚁群算法,采用2种测试手段:一种是Solomon的测试数据;另一种是在仿真环境下的测试.实验结果表明该算法很具有竞争能力. A new MOPs algorithm, named MEvo-Ant(multi-objective evolutionary ant algorithm), is proposed for the DVRPs(dynamic vehicle routing problem ). In the MEvo-Ant algorithm an archive is used to storage the candidate Pareto solutions while the Evo-Ant algorithm is employed to generate new solutions and update the archive to eliminate the dominated solutions. With the iterations the solutions in the candidate Pareto set are approach to the true Pareto solutions. In this paper two methods are used to evaluate the MEvo-Ant, the one is used the Solomon testing data, and the other is used a simulator. The experiment results show that the MEvo-Ant algorithm is effective to the DVRPs.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2007年第5期571-575,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(60301009) 武汉市青年科技晨光计划项目(20065004116-03)
关键词 演化蚁群算法 动态车辆路径问题 多目标优化 evolutionary ant algorithm dynamic vechicle routing problem (DVRP) multi-objective optimization
  • 相关文献

参考文献9

  • 1Wang Jiangqing, Tong Xiaonian, Li Zimao. An Improved Evolutionary Algorithm for Dynamic Vehicle Routing Problem with Time Windows[C]//International Conference on Computer Sciences (LNCS4490). New York:IEEE CS Press,2007:1233-1241. 被引量:1
  • 2Laporte G, Louveaux F V, Hamme V L. An Integer L-Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands[J]. Operations Research, 2002,50(3) : 415-423. 被引量:1
  • 3Cordeau J F, Gendreau M, Laporte G. A Guide to Vehicle Routing Heuristies[J]. Operations Research ,2002,53:512-522. 被引量:1
  • 4Gans N, van Ryzin G. Dynamic Vehicle Dispatching: Optimal Heavy Traffic Performance and Practical Insights[J]. Operations Research, 1999,47(5) : 675-692. 被引量:1
  • 5Dias H F,Vasconcelos J. Muhiobjective Genetic Algorithms Applied to Solve Optimization Problems [J].IEEE Transactions on Magnetic, 2002,38 (2) : 1133-1136. 被引量:1
  • 6Baack T. Evolutionary Algorithms in Theory and Practice [M]. New York: Oxford University Press, 1996. 被引量:1
  • 7Bertsimas D, Simchi L. A New Generation of Vehicle Routing Research:Robust Algorithms, Addressing Uncertainty[J]. Operations Research, 1993,44 ( 2 ) : 286- 304. 被引量:1
  • 8Berger J, Barkaoui M, Braysy O. A Parallel Hybrid Genetic Algorithm for the Vehicle Routing Problem with time Windows[EB/OL]. [2005-10-20]. http://neo. lcc. urea. es/radi-aeb/WebVRP/data/articles/hybrid2.pdf , 2001. 被引量:1
  • 9Blanton J L, Wainwright R L. Multiple Vehicles Routing with time and Capacity Constraints Using Genetic Algorithms [ C ]/ / Fifth International Conference on Genetic Algorithms. New York: IEEE CS Press, 1993 : 452-459. 被引量:1

同被引文献57

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部