期刊文献+

基于改进蚁群算法的分类规则挖掘 被引量:2

Classification rule extraction based on ant colony algorithm
下载PDF
导出
摘要 数据分类是数据挖掘中的一个重要课题,研究各种高效的分类算法是数据挖掘的重要问题之一。本文将蚁群算法与分类规则抽取问题相结合,提出了一种基于蚁群算法的具有自适应和变异杂交特征的分类规则挖掘方法,自适应地调整信息素增量,在规则构造中进行杂交变异,有效地节省了计算时间,并优化了生成的分类规则。实验结果表明:该算法可以有效克服停滞,提高搜索效率,有效地挖掘出简洁分类规则。 Data classification is an important task of data mining, and developing high-powered classification algorithm is one of the key problems for data mining. This paper combines the Ant Colony Algorithm with the classification rule mining problem, and puts forward an ant colony algorithm with adaptive crossover features, updates the pheromone adaptively, and processes the mutation and crossover operator, which saves the computing time effectively, and can discover better classification rule. Experiment results demonstrate that stagnation can be effectively overcome and searching efficiency is also improved, and succinct rules are discovered.
出处 《农业网络信息》 2007年第10期13-15,共3页 Agriculture Network Information
基金 河南省自然科学基金(0624010002)
关键词 数据挖掘 分类规则 蚁群算法 Data mining Classification rules Ant colony algorithm
  • 相关文献

参考文献3

二级参考文献13

  • 1潘曙光.基于软计算融合的分类规则采掘技术[J].南京大学学报(自然科学),2000,36:58-63. 被引量:1
  • 2[1]Chen M S,Han J W,Yu P S. Data mining:An overview from a database perspective [J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 (6): 866 -883. 被引量:1
  • 3[2]Ray S,Turi R H. Determination of number of clusters in k-means clustering and application in colour image segmentation [A]. ICAPRDT99 [C]. Calcutta, India, 1999.27 - 29. 被引量:1
  • 4[4]Maulik U,Bandyopadhyay S. Genetic algorithm-based clustering technique [J]. Pattern Recognition, 2000, 33 (9):1455 - 1465. 被引量:1
  • 5[5]Lee Seunggwan, Jung Taeung, Chung Taechoong. An effective dynamical weighted rule for Ant Colony system algorithm [J]. Proceedings of IEEE International Conference on Evolutionary Computation ,2001,2:1393 - 1397. 被引量:1
  • 6Dorigo M,Maniezzo V,Colorni A.Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Trans On System,Man,and Cybernetics,1996 ;26( 1 ) :29~41 被引量:1
  • 7E Lumber,B Faieta. Diversity and adaption in populations of clustering ants[C].In:J-A Meyer,S W Wilson Eds. Proceeding of the Third International Conferrence on Simulation of Adaptive Behavior:From Animals to animates, MIT Press/Bradford Books, Cambridge, MA,1994: 501~508 被引量:1
  • 8N Monmarche.On data clustering with artificial ants[C].In:Data Mining with Evolutionary Algorithms,Research Directions-papers from the AAAI Workshop ed. Menlo Park,CA:AAAI press,1999:23~26 被引量:1
  • 9Rafael S Parpinelli,Heitor S Lopes,Alex A Freitas. Data mining with a ant colony optimization algorithm[J].IEEE Trans On Evolution Computing, 2002 ;6 (4): 321~332 被引量:1
  • 10H S Lopes,M S Coutinho,W C Lima. E Sanchez,T Shibata,L Zadeh Eds. A evolutionary approach to simulate cognitive feedback learning in medical domain :Genetic Algorithm and Fuzzy Logic System :Soft Computing Perspectives[M].Singapore: World Scientific, 1998:193~207 被引量:1

共引文献49

同被引文献16

  • 1张惟皎,刘春煌,尹晓峰.蚁群算法在数据挖掘中的应用研究[J].计算机工程与应用,2004,40(28):171-173. 被引量:34
  • 2常晓磊,闫仁武.一种基于蚁群算法的分类规则挖掘算法[J].计算机技术与发展,2007,17(7):114-116. 被引量:4
  • 3毛国君,段立娟,王实,石云.数据挖掘原理与算法.北京:清华大学出版社.2006:64-153,211-251. 被引量:3
  • 4Dorigo M, Gambardella LM. Ant colony system:a cooperative leaming approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computing, 1997,1(1):53 - 56. 被引量:1
  • 5李晓明,闫宏飞,王继民.搜索引擎-原理、技术与系统.北京:科学出版社,2004:271-290. 被引量:1
  • 6Holden N, Freitas A.Web page classification with an ant colony algorithm, 2004:18 - 22. 被引量:1
  • 7Colorini A, Dorigo M, Maniezzo V, et al. Distributed optimiza- tion by ant colonies [ C ]//Proceedings of 1 st European conf on artificial life. Paris : Elsevier Publishing, 1991 : 134-142. 被引量:1
  • 8Parpinelli R S, Lopes H S, Freitas A A. Data mining with an ant colony optimization algorithm [ J ]. IEEE Transactions on Evolutionary Computation,2002,6(4) :321-332. 被引量:1
  • 9Sttitzle T, Hoos H I-I. MAX-MIN ant system [ J ]. Future Gen- eration Computer Systems,2000,16 ( 8 ) : 889-914. 被引量:1
  • 10黄丽丰.基于改进的蚁群算法在分类规则中的应用研究[D].重庆:重庆理工大学,2011. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部