期刊文献+

二进制量子粒子群优化算法及其在化工过程故障诊断中的应用 被引量:1

Binary Quantum Particle Swarm Optimization Algorithm and Its Application to Chemical Process Fault Diagnosis
下载PDF
导出
摘要 针对实际化工生产过程中故障数据缺乏,采用适合小样本问题的支持向量机(SVM)对化工过程稳态故障进行诊断。为了保证在线故障诊断的实时性,消除高维监控数据以及系统噪声对故障诊断的干扰,提出了一种新的基于二进制量子粒子群优化(BQPSO)算法和SVM的故障特征选择方法。仿真实验表明:BQPSO算法具有良好的全局搜索能力,能够快速、准确地搜索到故障特征变量;而基于特征选择的SVM故障诊断方法能可靠地实现对复杂化工过程的在线故障诊断。 Considering fault data are absent in the real chemical production process, this paper utilizes support vector machines (SVM) which fits the small sample problems to diagnose the chemical process steady faults. To ensure the real-time capability of online diagnosis and eliminate the disturbances from higher dimensional monitored data as well as system noises, a novel fault feature selection method based on binary quantum particle swarm optimization (BQPSO) and SVM is proposed. The results of simulation prove that BQPSO can find the global optima effectively and select the fault features quickly and exactly. And, the fault diagnosis method based on SVM with feature selection can reliably diagnose the faults online in the complex chemical process.
作者 王灵 俞金寿
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期692-696,共5页 Journal of East China University of Science and Technology
关键词 故障诊断 特征选择 二进制量子粒子群 量子算法 支持向量机 fault diagnosis feature selection BQPSO quantum algorithm SVM
  • 相关文献

参考文献9

  • 1Chiang L H,Pell R J.Genetic algorithms combined with discriminant analysis for key variable identification[J].Journal of Process Control,2004,14(2):143-155. 被引量:1
  • 2Oh I S,Lee J S,Moon B R.Hybrid genetic algorithms for feature selection[J].IEEE Trans Pattern Analysis and Machine Intelligence,2004,26:1424-1437. 被引量:1
  • 3Kennedy J,Eberhart R C.Particle swarm optimization[A].Proceeding of IEEE International Conference on Neural[C].Perth:IEEE Press,1995.1942-1948. 被引量:1
  • 4Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm[A].Proc of the 1997 Conf on Systems,Man,and Cybernetics[C].Piscataway:IEEE Press,1997.4104-4108. 被引量:1
  • 5王凌,吴昊,唐芳,郑大钟,金以慧.混合量子遗传算法及其性能分析[J].控制与决策,2005,20(2):156-160. 被引量:45
  • 6Clerc M,Kennedy J.The particle swarm:Explosion,stability and convergence in a multi-dimensional complex space[J].IEEE Trans On Evolutionary Computation,2002,6(1):58-73. 被引量:1
  • 7张葛祥,李娜,金炜东,胡来招.一种新量子遗传算法及其应用[J].电子学报,2004,32(3):476-479. 被引量:122
  • 8Chiang L H,Russell E L,Braatz R D.Fault Detection and Diagnosis in Industrial Systems[M].London:Springer-Verlag,2001. 被引量:1
  • 9Braatz R D.TE_process[DB/OL].http://brahms.scs.uiuc.edu/lssrl/software/TE_process/,2002. 被引量:1

二级参考文献3

共引文献160

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部