期刊文献+

外加应力下的LY12CZ电化学行为 被引量:5

Electrochemical behaviour of LY12CZ under applied stress
下载PDF
导出
摘要 利用动电位极化和电化学阻抗谱技术对应力加载下的LY12CZ铝合金在3%NaC l水溶液中的腐蚀行为进行了研究,考察了应力作用对LY12CZ在3%NaC l水溶液中的阳极极化行为、自腐蚀电位和破裂电位以及极化电阻和双电层电容大小的影响.结果表明,在加载应力时LY12CZ的阳极极化曲线和自腐蚀电位、破裂电位均明显负移;在浸泡时间相同的情况下,极化电阻也随应力的增加而显著降低,在应变强化阶段力学化学效应达到最大.破裂电位的负移和极化电阻的降低说明应力对LY12CZ的局部腐蚀有明显的影响. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were applied to investigate the corrosion behavior of LY12CZ in 3% NaCl aqueous solution. The effects of stress to anodic polarization behavior,free corrosion potential, breakdown potential, polarization resistance and doub- le-layer capacitance of LY12CZ were summarized. Results show that the polarization curve and breakdown potentials show obvious negative removals, and the mechanochemical effects reached maximum during the strain hardening stage. If stressed, under equivalent immersion time, polarization resistance also decreased significantly with the increase of stress. The nagetive removal of breakdown potential and decrease of polarization resistance indicate that stress plays an important role in the localized corrosion of LY12CZ.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第10期1246-1250,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家重点基础研究发展规划资助项目(G1999065010)
关键词 外加应力 局部腐蚀 电化学阻抗谱 力学化学效应 LY12CZ applied stress localized corrosion EIS ( electrochemical impedance spectroscopy) MCE (mechanochemical effect) LY12CZ
  • 相关文献

参考文献20

  • 1Ben Hamua G, Eliezer A, Gutman E M, et al. Mechanoelectrochemical behavior of magnesium alloys [J]. Materials Science and Engineering A, 2006,420 ( 1/2 ) : 109 - 114 被引量:1
  • 2Blank Ch, Mankowsk G. Pit propagation rate on the 2024 and 6056 aluminum alloys[ J ]. Corrosion Science, 1998,40 ( 2/3 ) : 411 -429 被引量:1
  • 3Pride S T.Scully J R, Hudson L J. Metastable pitting of alumunum and criteria for the transition to stable pit growth [ J ]. J Electrochem Soc, 1994,141 ( 11 ) :3028 - 3040 被引量:1
  • 4Conde A, De Damborenea J. Electrochemical impedance study of a natural aged Al-Cu-Mg alloy in NaCl[ J ]. Corrosion Science, 1997,39 ( 2 ) : 295 - 303 被引量:1
  • 5Guillaumin V, Mankowski G. Localized corrosion of 2024T351 aluminum alloy in chloride media[ J ]. Corrosion Science, 1999, 41(3) :421 -438 被引量:1
  • 6Szklarska Smialowska Z. Pitting corrosion of aluminum[J]. Corrosion Science, 1999,41 (9) : 1743 - 1767 被引量:1
  • 7Blanc C,Lavelle B,Mankowski G. Role of precipitates enriched with copper on the susceptibility to pitting corrosion of the 2024 aluminium alloy[ J ]. Corrosion Science, 1997,39 ( 3 ) : 495 - 510 被引量:1
  • 8王政富,李劲,王俭秋,柯伟.应变幅与应变速率在形变加速腐蚀过程中的作用[J].金属学报,1994,30(5). 被引量:5
  • 9王俭秋..腐蚀疲劳过程中形变与电化学交互作用研究[D].中国科学院金属研究所,1995:
  • 10王景茹,朱立群,饶思贤,张峥,钟群鹏.A3钢在弹性形变范围内的应变电极行为[J].中国腐蚀与防护学报,2005,25(4):226-231. 被引量:10

二级参考文献23

  • 1王政富,李劲,王俭秋,柯伟.应变幅与应变速率在形变加速腐蚀过程中的作用[J].金属学报,1994,30(5). 被引量:5
  • 2王景茹,朱立群,饶思贤,张峥,钟群鹏.A3钢在弹性形变范围内的应变电极行为[J].中国腐蚀与防护学报,2005,25(4):226-231. 被引量:10
  • 3ЭM古特曼.金属力学化学与腐蚀防护[M].北京:科学出版社,1989.. 被引量:1
  • 4Hoar T P, Scully J C. Mechanochemical anodic dissolution of austenitic stainless steel in hot chloride solution at controlled electrode potential[ J ]. J. Electroehem. Soc., 1964, 111 (3):348 - 352. 被引量:1
  • 5Logan H L. Physical Metallurgy of Stress Corrosion Fracture[ M].Rhodin T N, Ed. New York: Interscience, 1959, 295. 被引量:1
  • 6Seully J C. Kinetic features of stress- corrosion cracking[J]. Corros. Sci., 1967, 7:197 - 207. 被引量:1
  • 7Hoar T P. Fundamental aspects of stress cracking (eds. Staehle R W, Forty A J, Rooyen D Van), NACE, Houston, 1969, 98. 被引量:1
  • 8谭伟.[D].北京航空航天大学,2003,11. 被引量:1
  • 9Hoar T P, Hines J G. Stress Corrosion and Embrittlement [ M ].Robertson W D, Ed. New York:John Wiley, 1956,107. 被引量:1
  • 10Magnin Th. Advances in Corrosion - Deformation Interactions[M]. Switzerland" Germany. UK. USA: Transtech Publication,1996, 68. 被引量:1

共引文献24

同被引文献42

引证文献5

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部