期刊文献+

基于信息熵的Logo分类问题研究 被引量:1

Logo classification based on information entropy
原文传递
导出
摘要 匹配是实现图像分类的关键问题,由于匹配问题的复杂性,目前还没有一个较好的解决办法。该文提出了一种基于Fourier变换和信息熵相结合的匹配算法,对Logo的分类问题进行了研究。通过Fourier变换在图像的频域中找到最佳匹配,使用相关度阈值与信息熵差比作为衡量标准。实验中选取了大量商品图像对Logo匹配问题中查准率和查全率进行了统计分析。实验结果表明,当选取适当相关度阈值与信息熵差比的情况下,该算法能有效提高商品图像按Logo的分类效果。 Image matching is a key issue in classification algorithms, but due to the complexity of the image matching, no good algorithms have been developed. This paper presents an algorithm that combines Fourier transforms and information entropy for Logo classification. The correlation ratio threshold and the entropy difference ratio threshold are used to evaluate the matching results. The Logo matching accuracy and recall ratios with the algorithm were statistically analyzed for a large number of E-goods images. The results show that the algorithm effectively classifies the Logos given the proper correlation threshold and entropy difference ratio threshold.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期1709-1712,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目(2003AA412020) 国家自然科学基金资助项目(60542004)
关键词 图像匹配 Logo分类 FOURIER变换 信息熵 image matching Logo classification Fourier transform information entropy
  • 相关文献

参考文献8

  • 1Brown L. A survey of image registration techniques [J]. ACM Computing Surveys, 1992, 24(4) : 325 - 376. 被引量:1
  • 2Song T, L registration ee V S, Rusinek H, in dynamic MR over-complete dyadic wavelet [C]//Medical Image Computing Intervention, Palm Sorinvs. CA. et al. Automatic 4-D renography based on and Fourier transforms and Computer-Assisted USA. 2005: 205- 213. 被引量:1
  • 3Alvarez N A, Sanchiz J M. Image registration from mutual information of edge correspondences [C]//10th Cuba, 2005: 528- 539. 被引量:1
  • 4李登高,秦开怀.基于随机轮廓匹配的快速图像配准算法[J].清华大学学报(自然科学版),2006,46(1):111-114. 被引量:15
  • 5Isgro F, Pilu M. A fast and robust image registration method based on an early consensus paradigim [J]. Pattern Recognition letters, 2004, 25(8): 943- 954. 被引量:1
  • 6Blanquer I, Hernandez V, Mas F, et al. A framework based on Web services and grid technologies for medical image registration [C]//Biological and Medical Data Analysis, 6th International Symposium. Verlag, Springer, 2005 : 22 - 33. 被引量:1
  • 7Demirei M F, Shokoufandeh A, Keselman Y,et al. Object recognition as many-to-many feature matching [J]. International journal of computer vision, 2006, 69(2) : 203- 222. 被引量:1
  • 8Chia-Ling T, Charles V S. Feature-based retinal image registration: Algorithms and validation [D]. Troy, NY.. Rensselaer Polytechnic Institute, 2003. 被引量:1

二级参考文献8

  • 1Brown L G.A survey of image registration techniques[J].ACM Computing Surveys,1992,24(4):325-376. 被引量:1
  • 2Zitová B,Flusser J.Image registration methods:A survey[J].Image and Vision Computing,2003,21(11):977-1000. 被引量:1
  • 3Fischler M,Bolles R.Random sample consensus:A paradigm for model fitting with application to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395. 被引量:1
  • 4Isgrò F,Pilu M.A fast and robust image registration method based on an early consensus paradigm[J].Pattern Recognition Letters,2004,25(8):943-954. 被引量:1
  • 5Rodríguez J J,Aggarwal J K.Matching aerial images to 3-D terrain maps[J].IEEE Trans Pattern Anal Mach Intell,1990,12(12):1138-1149. 被引量:1
  • 6Marr D,Hildreth E.Theory of edge detection[A].Proceedings of the Royal Society of London[C].London:The Royal Society,1980,187-217. 被引量:1
  • 7Karp R M.An introduction to randomized algorithms[J].Discrete Applied Mathematics,1991,34(1-3):165-201. 被引量:1
  • 8Arun K S,Huang T S,Blostein D D.Least-square fitting of two 3-D point sets[J].IEEE Trans Pattern Anal Mach Intell,1987,9(5):698-700. 被引量:1

共引文献14

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部