摘要
离线手写数字识别是光学字符识别的一个重要分支,在银行票据识别、邮政编码识别等领域有着广泛的应用。由于单一分类器在识别率上很难达到要求,人们提出了各种集成分类器识别方案。通过对离线手写数字的特征提取,从特征互补的角度出发,采用了最小距离分类器、树分类器和BP网络分类器进行多分类器互补集成,提出了基于置信度的多分类器互补集成方法。通过实验对比,基于置信度的多分类器互补集成手写数字识别在识别率和识别速度上达到了满意的结果。
Off-line handwritten numeric recognition is an important branch of Optical Character Recognition (OCR).It is widely used in the fields of bank note and post code handwritten numeric recognition task.There are many difficult for improve recognition rate if use only one classify machine,so many combining classifies methods have been proposed.In this paper,through extracting the feature of the off-line handwritten numeric characters based on the feature complementary,a method of integrated multi-classifiers of complementary based on the degree of confidence is proposed,witch includes the technology of the least distance classifier,the tree classifier as well as the BP network classifier.Experimental results show that the method proposed in this paper has excellent recognition rate and speed.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第30期228-230,共3页
Computer Engineering and Applications
基金
湖南省自然科学基金(the Natural Science Foundation of Hunan Province of China under Grant No.06JJ50133)
湖南省教育厅优秀青年项目(No.05B052)。
关键词
手写数字
置信度
多分类器互补集成
handwritten numerical
degree of confidence
combining classifiers complementary