期刊文献+

基于超模糊集的多属性图像阈值分割算法 被引量:3

Image Thresholding and Simulation Using Multi-properties Based on Ultra-fuzzy Sets
下载PDF
导出
摘要 传统的分割方法往往是根据图像单一的属性标准对图像进行分割,很难满足图像的多方面分割要求。由于许多外界干扰因素的存在,使得基于经典模糊集方法进行的分割,结果也常常不令人满意。针对这些问题,介绍了一种基于超模糊集合理论的多属性图像阈值分割方法(F2ES),在超模糊集的基础上,结合模糊熵和模糊相似性两种截然不同的属性刻画待分割图像,构造综合评价函数,得到最佳阈值。针对多幅不同类型图片进行分割仿真实验,得到较好的结果,证明该算法是切实可行的。 Classical measures partition one image according to a single property. So, it is difficult to satisfy requests of the image thresholding. Furthermore, due to disturbing factors, the result of image thresholding based on fuzzy sets is not always satisfactory. A new thresholding using multi-properties based on ultra-fu~ sets was proposed (F2ES), which processed optimal threshold as comprehensive assessment function constructed by fuzzy entropy and fuzzy similarity based on ultra-fuzzy sets. Experimental results and simulations conducted on various images are provided to testify the validity of the proposed algorithm.
机构地区 东北大学
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第19期4434-4439,4444,共7页 Journal of System Simulation
基金 中国国家自然科学基金(60274099)
关键词 图像阈值 模糊集 超模糊集 模糊熵 模糊相似性 综合评价函数 image threshold fuzzy sets ultra-fuzzy sets fuzzy entropy fuzzy similarity comprehensive assessment function
  • 相关文献

参考文献15

  • 1Mehmet Sezgin,Bulent Sankur.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging (S1017-9909),2004,13(1):146-165. 被引量:1
  • 2李国友,李惠光,吴惕华.改进的PCNN与Otsu的图像增强方法研究[J].系统仿真学报,2005,17(6):1370-1372. 被引量:9
  • 3杨姝,高立群,边丽英.基于优化熵函数二维最大熵阈值算法改进[J].系统仿真学报,2005,17(6):1350-1352. 被引量:7
  • 4Cheng H D,Chen H H.Image segmentation using fuzzy homogeneity criterion[J].Information Sciences (S0200-0255),1998,98(1):237-262. 被引量:1
  • 5Ramar K,Arumugam S,Sivanandam S N,Ganesan L.Quantitative fuzzy measures for threshold selection[J].Pattern Recognition Letter (S0167-8655),2000,21(1):1-7. 被引量:1
  • 6Chaira,T,Ray,A K.Segmentation using fuzzy divergence[J].Pattern Recognition Letters (S0167-8655),2003,12(24):1837-1844. 被引量:1
  • 7J M Mendel,R I Bob John.Type-2 fuzzy sets made simple[J].IEEE Trans.Fuzzy Systems (S1063-6706),2002,10 (2):117-127. 被引量:1
  • 8Nilesh N-Karnik,Jerry M-Mendel.Operations on type-2 fuzzy sets[J].Fuzzy Sets and Systems (S0165-0114),2001,122(2):327-348. 被引量:1
  • 9Hamid R Tizhoosh.Image thresholding using type II fuzzy sets[J].Pattern Recognition (S0031-3203),2005,38(12):2363-2372. 被引量:1
  • 10J M Mendel.Uncertain Rule-Based Fuzzy Logic Systems[M].Englewood Cliffs,NJ:Prentice-Hall,2001. 被引量:1

二级参考文献13

  • 1孟庆生.信息论[M].西安交通大学出版社,1989.. 被引量:11
  • 2H Rughooputh, S Rughooputh. Spectral Recognition Using a Modified Eekhom Neural Network Model [J]. Image and vision computing, 1101-1104, 2000. 被引量:1
  • 3Johnson J L, Padgett M L. PCNN Models and Applications [J]. IEEE Trans on Neural Networks, 1999, 10 (3): 480-498. 被引量:1
  • 4Skourikhine A N. A pulse couple neural network for image smoothing and segmentation [A]. International Symposium on Computational Intelligence [C]. Kosice, Slovakia, 2000. 被引量:1
  • 5Oust N A threshold selection method from gray-leave histograms [J].IEEE Trans. System. Man Cybemet, 1979, SMC-9: 62-66. 被引量:1
  • 6Kittiler J, Illingworth J. Minimum error thresholding [J]. Pattem Recognition, 1986, 19(1): 41-47. 被引量:1
  • 7Pun T.A new method for grey-level picture thesholding using the entropy of the histogram [J]. Signal Process.1980, 2(3): 223-237. 被引量:1
  • 8Kapur J N, Sahoo P K, Wong A. A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision,Graphics, and Image Processing, 1985, 29:273-285. 被引量:1
  • 9Abutaleb A S. Automatic thresholding of gray-level picture suing two-dimensional entropy. Computer Vision [J]. Graphics, and Image Processing, 1989, 47:22-32. 被引量:1
  • 10张毅军,吴雪菁,夏良正.二维熵图像阈值分割的快速递推算法[J].模式识别与人工智能,1997,10(3):259-264. 被引量:53

共引文献14

同被引文献30

  • 1莫晓齐,王耀南.基于遗传算法的熵算法在人类染色体图像的分割中的应用(英文)[J].系统仿真学报,2006,18(7):1921-1925. 被引量:6
  • 2Otsu N. A Threshold Selection Method from Gray2level Histograms [ J ]. IEEE Transactions on System Man and Cybernetic, 1979,9( 1 ) :62-66. 被引量:1
  • 3Sue Wu, Adrian Amin. Automatic Thresholding of Gray Level Using Multi-stage Approach [ C ]. //Proceedings of IEEE International Conference on Document Analysis and Recognition ( ICDAR )'2003, Edinburgh, Scotland, 2003 - 1238- 1242. 被引量:1
  • 4Brink A D. Thresholding of Digital Image Using Two-dimensional Entropies [ J ]. Pattern Recognition, 1992,25 ( 8 ) : 803- 808. 被引量:1
  • 5J Kittler,J Illingworth. On Threshold Selection Using Clustering Criteria[J]. IEEE Transactions on System Man and Cybernetic, 1985,15 (5) :652-655. 被引量:1
  • 6Pal N P, Bezdek J C. On Cluster Validity for the Fuzzy Cmeans Model [ J ]. IEEE Transactions on Fuzzy Systems, 1995,3 (3) : 370-379. 被引量:1
  • 7Pal N R,Pal S K.Entropic Thresholding[J].Signal Processing,1989,16(2):97-108. 被引量:1
  • 8Ghada A L,Ali E Z.Minimum Cross Entropy Thresholding for SAR Images[C] //2008 3rd International Conference on Information and Communication Technologis:from Theory to Applications.Damascus:Syrian Arab Republic,2008:4530-4535. 被引量:1
  • 9Yang Yong,Huang Shuying.Retinal Image Mosaic Base on Genetic Algorithm and Automated Blood Vessel Extracting Approach[C] //Proceedings of the 7th World Congress on Intelligent Control and Automation.Chongqing:IEEE Inc,2008:7751-7756. 被引量:1
  • 10Shen Xiaohong,Zhang Yulin,Li Fangzhen.An Improved Two-Dimensional Entropic Thresholding Method Based on Ant Colony Genetic Algorithm[C] //2009 Global Congress on Intelligent Systems (GCIS 2009).Xiamen:IEEE Computer Society,2009:163-167. 被引量:1

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部