期刊文献+

求解TSP问题的自逃逸混合离散粒子群算法研究 被引量:11

Study of a Self-Escape Hybrid Discrete Particle Swarm Optimization for TSP
下载PDF
导出
摘要 通过对旅行商问题(TSP)局部最优解与个体最优解、群体最优解之间的关系分析,针对DPSO算法易早熟和收敛慢的缺点,重新定义了离散粒子群DPSO的速度、位置公式,结合生物界中物种在生存密度过大时个体会自动分散迁徙的特性和局部搜索算法(SEC)后,提出了一种新的自逃逸混合离散粒子群算法(SEHDPSO)。自逃逸思想是一种确定性变异操作,能使算法中陷入局部极小区域的粒子通过自逃逸行为进行全局寻优,从而克服算法易早熟的缺陷。仿真结果表明,SEHDPSO算法比混合蚁群算法(ACS+2-OPT)具有更好的收敛性和搜索效率。 To deal with the problem of premature convergence and slow search speed, a new algorithm which named the discrete particle swarm optimization algorithm (DPSO)has been proposed based on redefining speed and position of the DPSO, for solving the symmetrical traveling salesman problem (TSP)in this paper. We change the algorithm to self-escape hybrid discrete particle swarm optimization (SEHDPSO)after combining a strategy called self-escape method and local search method. The SEHDPSO uses to explore the global minima thoroughly, which derives from the phenomena that some organisms can escape dynamically from the original cradle when they find the survival density is too high to live. The subsequent experiment result shows that the SEHDPSO can not only speed up the convergence significantly but also solve the premature problem effectively.
出处 《计算机科学》 CSCD 北大核心 2007年第8期143-144,195,共3页 Computer Science
基金 教育部项目(104262) 重庆市科技计划项目(CSTC-2006BB2328) 西南大学校基金(SWNUQ2005005)资助
关键词 离散粒子群算法 旅行商问题 自逃逸 Discrete particle swarm optimization algorithm, Traveling salesman problem, Self-escape
  • 相关文献

参考文献10

  • 1Eberhart R,Kennedy J.A New Optimization Using Particles Swarm Theory.Proc Sixth International Symposium on Micro Machine and Human Science Nagiya[C].Japan:IEEE Service Center,Piscataway,1995.39-43 被引量:1
  • 2Kennedy J,Eberhart R.A discrete binary version of the particle swarm optimization[C].In:Proc.IEEE Int Conf.on Neural Networks.Perth,Austrilia,1997.4104-4108 被引量:1
  • 3WANG KANG-PING.Particle swarm optimization for traveling salesman problem[J].In:Proceedings of the Second International on Machine Learning and Cybernetics,Xi'an,November 2003.2-5 被引量:1
  • 4Glover F.Ejection chains,reference structures and alternating path methods for traveling salesman problems[J].Discrete Applied Mathematics,1996,65:223-253 被引量:1
  • 5Helsgaun K.An effective implementation of the Lin-Kernighan traveling salesman heuristic[J].European Journal of Operational Research,2000,126:106-130 被引量:1
  • 6Ozcan E,Mohan CK.Particle swarm optimization:Surfing the waves[J].In:Proc.of the IEEE Int'l Conf.on Evolutionary Computation.Washington:IEEE Inc,1999.1939-1944 被引量:1
  • 7www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/tsp/ 被引量:1
  • 8Rego C.Relaxed tours and path ejections for the traveling salesman problem[J].European journal of Operational Research,1998,106:522-538 被引量:1
  • 9LE Louarn F,Gendreau M.Geni Ants for the Traveling Salesman Problem[J].Annals of Operations Research,2004,121:187-201 被引量:1
  • 10Croes G A.A method for solving traveling salesman problem[J].Operations Research,1958,6:791-812 被引量:1

同被引文献108

引证文献11

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部