摘要
在σ-备线性半序空间和具有正规锥P的实Banach空间,分别讨论其假设条件和论证方法均与以往不同的新型"增"算子,获得多个不动点的存在性定理与存在唯一性定理,并应用于非线性扩散、气体点燃、生化浓缩等领域中非线性特征值问题的求解。
On the σ-complete linear semi-order space and real Banach space with a normal cone, a class of new "increasing" operators are discussed. Our assumptions and demonstration methods are different from the existing ones. Many existence theorems and existence and uniqueness theorems of the fixed point are obtained. Furthermore, nonlinear eigenvalue problems in the field of nonlinear spread, light gas, enriched biochemistry can be solved by these theorems.
出处
《工程数学学报》
CSCD
北大核心
2007年第5期939-942,共4页
Chinese Journal of Engineering Mathematics
关键词
半序
算子
上(或下)解
不动点
semi-order
operator
upper (or inferior) solutions
fixed point