期刊文献+

基于KNN算法的组合式非搜索特征选择算法 被引量:6

No-search Combined Feature Selection Method Based on KNN
下载PDF
导出
摘要 随着特征维数的不断增长,搜索性特征选择算法付出巨大的时间代价,而非搜索性算法则由于其时间代价小,而且能有效去除冗余特征等优越性越来越受到关注。该文介绍了一种非搜索性算法——KNN特征选择算法,该算法通过计算特征间的相关性来消除冗余特征,时间代价小。在此基础上,该文提出了一种基于KNN算法的组合式非搜索特征选择算法。 As feature dimension increases continually, search algorithms costs a lot of time. Therefore, much attention is paid to no-search method owing to their small time cost and efficiency in reducing redundant features. KNN method, which is based on measuring similarity between features whereby redundancy therein is removed is introduced. And a no-search combined feature selection method based on KNN is proposed.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第18期217-218,221,共3页 Computer Engineering
基金 国家"973"计划基金资助项目
关键词 特征选择 非搜索 最大信息压缩指数 KNN feature selection no-search maximum information compression index KNN
  • 相关文献

参考文献6

  • 1Siedlecki W,Sklansky J.On Automatic Feature Selection[J].Int'l Journal of Pattern Recognition and Artificial Intelligence,1988,2(2):197-220. 被引量:1
  • 2Glover F.Future Paths for Integer Programming and Links to Artificial Intellifence[J].Comput.& Ops.,1986,13(5):533-549. 被引量:1
  • 3Pudil P,Novovicova,Kittler J.Floating Search Methods in Feature Selection[J].Pattern Recognition Letters,1994,15(11):1119-1125. 被引量:1
  • 4Narendra P M,Fukunaga K.A Branch and Bound Algorithm for Feature Selection[J].IEEE Transaction on Computers,1977,26(9):917-922. 被引量:1
  • 5Mitra P,Murthy C A,Pal S K.Unsupervised Feature Selection Using Feature Similarity[J].IEEE Trans.on Pattern Recognition and Machine Intelligence,2002,24(3). 被引量:1
  • 6孙即祥等编著..现代模式识别[M].长沙:国防科技大学出版社,2002:460.

同被引文献39

引证文献6

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部