期刊文献+

一种新的线性最优滤波器的设计与研究 被引量:1

Design and Research on a New Optimal Linear Filter
下载PDF
导出
摘要 针对一类未知机动目标设计了一种线性最优滤波器。该滤波器采用有限记忆模型作为滤波模型,模型参数用动态最小二乘方法辨识得到。由此得到的滤波器称为基于辨识有限记忆模型的线性最优滤波器。有限记忆模型克服了时间多项式模型(如CV模型、CA模型、Singer模型等)对目标物理特性的依赖性,它从目标运动轨迹入手对目标运动特性进行描述,更适合于战场未知目标的跟踪滤波。通过原理分析和Monte Carlo仿真实验验证了该滤波方法的有效性,并且和Kalman滤波方法进行了比较。 An optimal linear filter is designed for a class of targets with unknown maneuvers. The model of the filter is Finite Memory Model (FMM) with identified parameters. Dynamic Least Square method is used to identify these parameters. The filter designed is named as the Optimal Linear Filter based on Finite Memory Model with Identified Parameters. Not as the time-polynomial model (such as CV model, CA model, Singer Model etc. ), the FMM is independent on the physical character of the target. It describes the kinetic character of the target from its track, which makes the FMM is more suitable for the filtering and tracking of these unknown targets on the battlefield. The principle of modeling of FMM is analyzed in this paper, and the filter's validity is verified by the Monte Carlo simulation experiments. In these experiments the filter proposed is compared with several kinds of Kalman filters.
出处 《火力与指挥控制》 CSCD 北大核心 2007年第9期95-100,共6页 Fire Control & Command Control
基金 国防预研基金资助项目
关键词 有限记忆模型(FMM) 动态最小二乘法(DLS) Kalman滤波(KF) finite memory model ,dynamic least square method, optimal linear filter
  • 相关文献

参考文献6

二级参考文献19

  • 1蔡庆宇 薛毅 等.相控阵雷达数据处理及其仿真技术[M].北京:国防工业出版社,1997.4-7. 被引量:55
  • 2[1]Bar-ShalomY, BlairD W. Multitarget Multisensor@Tracking@Applications and Advances [M].Boston,MA:Aretch House,2000,vol,Ⅲ 被引量:1
  • 3[2]Roecker J A, McGILLEM C D. Target Tracking Maneuver-Centered Coordinates[J]. IEEE Transactions on Aerospace and Electronic Systems,25,6 (Nov. 1989),836-842 被引量:1
  • 4[4]D Lerro,Bar-Shalom Y. Interacting Multiple Model Tracking with Target Amplitude Feature[J]. IEEE Transaction on Aerospace and Electronic Systems, 1993,29(2): 494-508 被引量:1
  • 5[5]Bar-Shalom Y, X R Li. Estimation and Tracking@Principles, Techniques and Sofiware[M].Dedham,MA:Aretch House, 1993 (reprinted by YBS Publishing, Storrs, CT, 1998) 被引量:1
  • 6[6]Howard R A. System analysis of semi-Markov processor[J]. IEEE Trans Military Electronics,1964,8(2):114-124 被引量:1
  • 7[7]Singer R A. Estimating optimal tracking filter performance for manned maneuvering targets[J].IEEE Trans. on AES,1970,6(4):473-483 被引量:1
  • 8[8]Friedland B. Optimum steady state position and velocity estimation using sampled position data[J] .IEEE. on AES, 1973,9(6):906-1101 被引量:1
  • 9[9]Bridgewater A W. Analysis of second and third order steady-state tracking filters[C]. AGARD Conference roceedings,Monterey: 1973,252:9(1)-9(11) 被引量:1
  • 10[10]Zhou hongren,Kumar K S P. A current statistical model and adaptive algorithm for estimating maneuvering targets[J]. AIAA Journal, Guidance Control and Dynamics, 1984,7(5) 被引量:1

共引文献10

同被引文献2

  • 1何友,修建娟,张晶炜.雷达数据处理及应用[M].北京:电子工业出版社,2011:170-188. 被引量:2
  • 2毛少杰,居真奇.C4ISR系统仿真试验技术[M].北京:军事科学出版社,2011. 被引量:7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部