期刊文献+

不同思维模式下的脑电奇异谱分析 被引量:5

Singularity Spectra Analysis of the Electroencephalogram in Different Modes of Thinking
下载PDF
导出
摘要 人脑是极为复杂的系统,脑电(EEG)是脑内大量神经元电活动合作与竞争的综合反映,由局部和非局部频率分量构成,这些局部分量与特殊的内在神经网络状态紧密相关,在宏观上反映了脑的机能状态.脑电信号的非线性分析是近年出现的一种脑电分析方法,它反映了大脑处理信息活动的有序程度,为研究大脑高级认知活动提供了新的思路.越来越多的研究表明,传统的非线性动力学方法采用单一的参数不能充份描述脑电信号的复杂行为,多重分形用一个谱函数从不同层次描述了分形体的整体生长特征,采用多重分形方法描述系统的非线性动力学行为能够得到更多的信息.本文对不同思维模式下脑电的多重分形特性进行分析,发现EEG的奇异谱在不同的思维状态下具有差异.进一步对这种差异进行统计分析表明大脑思维的EEG多重分形特性受到人脑的思维方式的影响,EEG多重分形奇异谱强度分布反映了大脑思维模式的差异. Human brain is an extremely complicated system. Electroencephalogram (EEG) is a comprehensive reflection of the cooperation and competition of mass neuron electricity, consisted of the local and non-local frequency component. These local components, which are related with special state of the neural net, reflect the function of the brain on the macro. The nonlinearity analysis method of EEG is the are that appears recently. It reveals the degree of order to which the brain processes the information, with may provide a new way of studying the high level cognition activity of brain. More and more research indicates that traditional non-linear dynamics method using one parameter can't describe complicated behaviors of the EEG fully. Multifractal describes the whole growth feature of fractal with a spectrum function at many levels. Multifractal method can get more information than traditional non-linear dynamics method in describing the non-linear dynamics behavior. This paper carries on analysis of EEG in different thinking modes, All data used in this study were recorded from thirteen subjects performing baseline tasks, mental arithmetic tasks, geometric figure rotation tasks, mental letter composing tasks and counting tasks. Subjects were seated in a sound-proof, dimly-lit, room. Electrodes were placed respectively at O1, O2, P3, P4, C3, and C4, standard electrode locations in the 10- 20 system. The electrodes were connected to EEG amplifiers whose bandpass filtered the signals at 0.2-100 Hz. The EEG signals were sampled at 250 samples per second and digitized with 12 bits of accuracy. Data were recorded from each subject for duration of 10 seconds while the subject was performing a single task with his eyes open. We found many differences of singularity spectra distribution. More statistical research on such difference has proved that multifractal character of EEG is influenced by the thinking mode, and the△α. Singularity spectra distribution of EEG can reveal the thinking mode to some extent.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期426-431,共6页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(60501003)
关键词 思维模式 奇异谱 奇异谱分布 thinking mode, singularity spectra, singularity spectra distribution.
  • 相关文献

参考文献3

二级参考文献11

  • 1Chhabra A,Jensen R V.Direct determination of the f(α) singularity spectrum[].Physical Review.1989 被引量:1
  • 2Ivanov PC,Amaral LAN,Goldberger AL,et al.Multifractality in human heartbeat dynamics[].Nature.1999 被引量:1
  • 3Watters P A.Fractal structure in the electroencephalogram[]..1998 被引量:1
  • 4Sarbadhikari,S.N,Chakrabarty,K.Cha os int hebrain :Asho rtrevi ewalludi ng toepileps y,depressio n,exerci sea ndlateralization[].MedicalEngineering&Physics.2001 被引量:1
  • 5Diambra,L,Malta,C.P,Cpurr o, A.etal.Nonli nearstruct ur esinelectroencephalo gramsignals[].Physica A Statistical Mechanics and its Applications.2001 被引量:1
  • 6Cheng,Y.J,Zeng,M,Yao,D. Z.Thenon lineard ynamicana ly-s iswithmulti-chan nelE EGtimeseries[].J ournalofClinicalElec-troneurophysiology.2000 被引量:1
  • 7Pritchard,W.S,Duke,D.W.M easur in gch aosinth ebrain:A tutori al reviewofn onlineardyna micalEEGanalysis[].Internationa lJournalofNeuroscience.1992 被引量:1
  • 8Stanley,H.E,Amaral,L.A.N,Goldb er ger,A.L.etal.St atisti- cal physicsandphysiology:M ono fractalandmu ltifractalap-proaches[].Physica A Statistical Mechanics and its Applications.1999 被引量:1
  • 9Halsey,T.C,Jensen,M.H,K adanoff,L.P .etal.Fr act almea s-uresandtheirsin gularitics:Thech ar acteriz ationofstrangesets[].Physical Review A Atomic Molecular and Optical Physics.1986 被引量:1
  • 10Schaul,N.Th efundament al neuralme chanismsofelectro-encephalography[].Elec troencephalographyandClinicalNeuro-physiology.1998 被引量:1

共引文献8

同被引文献22

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部