期刊文献+

一类含Beddinton-DeAngelis型功能性反应的捕食系统的Hopf分支分析(英文)

HOPF BIFURCATION ANALYSIS OF A BEDDINGTON-DEANGELIS TYPE PREDATOR-PREY SYSTEM
下载PDF
导出
摘要 针对一类含有Beddington-DeAngelis型功能性反应的捕食系统,给出了平衡点分析和Hopf分支产生的条件,通过数值例子验证了极限环的存在性,对生态系统动力学复杂性的研究提供了参考. In this paper, we investigate the analysis of the equilibrium and Hopf bifurcation of a predator-prey system with Beddington-DeAngelis type functional response. The numerical examples illustrate the existence of limit cycle. It will be useful for studying the dynamic complexity of ecosystems.
出处 《陕西科技大学学报(自然科学版)》 2007年第4期94-97,共4页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金(10471040)
关键词 捕食系统 Beddington—DeAngelis型功能性反应 HOPF分支 极限环 predator-prey system Beddington-DeAngelis type functional response Hopf bifurcation limit cycle
  • 相关文献

参考文献19

  • 1A.A. Berryman. The orgins and evolution of predator-prey theory[J]. Ecology, 1992, 73:1 530-1 535. 被引量:1
  • 2Y. Kuang, E. Beretta. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J. Math. Biol. , 1998, 36:389-406. 被引量:1
  • 3J. D. Murray. Mathematical biology (3 edition) [M]. New York:Springer, 2003. 被引量:1
  • 4R. Arditi, L. R. Ginzburg. Coupling in predator-prey dynamics: ratio-dependence[J]. J. Theor. Biol., 1989, 139:311-326. 被引量:1
  • 5P. A. Abrams, L. R. Ginzburg. The nature of predation., prey dependent, ratio dependent or neither? [J]. Trends in Ecology and Evolution, 2000, 15:337-341. 被引量:1
  • 6Tzy-Wei Hwang. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. J. Math. Anal. Appl. , 2003, 281:395-401. 被引量:1
  • 7Tzy-Wei Hwang. Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response[J]. J. Math. Anal. Appl., 2004, 290:113-122. 被引量:1
  • 8C. Jost. Comparing predator-prey models qualitatively and quantitatively with ecological time-series data[M]. Phd-thesis, Institute National Agronomique, Paris-Grignon, 1998. 被引量:1
  • 9C. Jost, O. Arino, R. Arditi. About deterministic extinction in ratio-dependent predator-prey models[J]. Bull. Math. Biol. , 1999, 61:19-32. 被引量:1
  • 10Shigui Ruan, Dongmei Xiao. Global analysis in a predator-prey system with nonmonotonic functional response[J]. SIAM J. Appl. Math. , 2001, 61:1 445-1 472. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部