期刊文献+

JFNK方法在求解全隐式一维非线性平流方程中的应用 被引量:2

An Application of JFNK Method to Solving the 1D Nonlinear Advection Equation in Fully Implicit Scheme
下载PDF
导出
摘要 JFNK(Jacobian-free Newton-Krylov)方法是由Newton迭代方法和Krylov子空间迭代方法构成的嵌套迭代方法。作者以全隐式差分的一维非线性平流方程(亦称无粘Burgers方程)探讨采用全隐式格式计算的必要性和JFNK方法的有效性。模拟结果表明,隐式结果比显式和半隐式结果在稳定度和精度方面较大的优越性,特别是模拟气流强的系统以及要素空间分布具有较大梯度的系统。 Over the last 10 years it had major advantages in super computing that the higher and higher resolution was adopted in atmospheric numerical models for various scales. And this in turn provides possibility and necessity for using an implicit schema Zeng and Ji proposed a scheme with energy conservation in 1981. However, the convergence of iteration involved in the fully implicit scheme remains a key issue to solve. JFNK (Jacobian-free NewtonKrylov) method, a highly efficient method for solving implicit nonlinear equation, has been successfully used in many fields of computational physics. JFNK method is a nested iteration method for solving the nonlinear partial differential equations (PDEs), which is synergistic combination of Newton-type method and Krylov subspace method, without forming and storing the elements of the true Jacobian matrix. Some studies have shown that the fully implicit method solved by JFNK is more efficient and accurate than the semi-implicit method for a given level of accuracy and for a given CPU time. This paper, based on the 1D nonlinear advection equation (namely the inviscid Burgers equation), a number of comparative simulations, with the 2-order fully implicit (IM) schemes, the 2-order explicit (EX) schemes and 2-order semi-implicit (SI) schemes, have been carried out to investigate the necessity of adopting fully implicit schemes and the effect of JFNK method. The results show that the implicit scheme has better performance in comparison with the other two schemes in terms of computational stability and accuracy, especially for the simulation of flow system with strong current or large gradient of variables. These can be summarized as follows. (1) When the time step is smaller (say time step is 2^-9), all the three schemes are stable; but the accuracy of IM scheme is higher than it of the others. And with the increase of time step, the IM scheme remains stable, while the other two become unstable up to time step is 2^-3 when basic flow is 0. 0,
出处 《大气科学》 CSCD 北大核心 2007年第5期963-972,共10页 Chinese Journal of Atmospheric Sciences
基金 国家自然科学基金资助项目40545020
关键词 JFNK方法 一维非线性平流方程 全隐式差分 JFNK method, 1D nonlinear advection equation, fully implicit scheme
  • 相关文献

参考文献31

  • 1Sperber K R,Hameed S,Potter G L,et al.Simulation of the northern summer monsoon in the ECMWF model:Sensitivity to horizontal resolution.Mon.Wea.Rev.,1994,122:2461-2481 被引量:1
  • 2Baumhefner D P.Numerical extended-range prediction:Forecast skill using a low-resolution climate model.Mon.Wea.Rev.,1996,124:1965-1980 被引量:1
  • 3Stephenson D B,Chauvin F,Royer J F.Simulation of the Asian summer monsoon and its dependence on model horizontal resolution.J.Meteor.Soc.Japan,1998,76 (2):237-265 被引量:1
  • 4Martin G M.The simulation of the Asian summer monsoon,and its sensitivity to horizontal resolution in the UK Meteorological Office Unified Model.Quart.J.Roy.Meteor.Soc.,1999,125:1499-1525 被引量:1
  • 5Meehl G A,Zwiers F,Evans J,et al.Trends in extreme weather and climate events:Issues related to modeling extremes in projections of future climate change.Bull.Amer.Meteor.Soc.,2000,81:427-436 被引量:1
  • 6曾庆存 季仲贞.发展方程的计算稳定性问题[J].计算数学,1981,3(1):79-86. 被引量:19
  • 7季仲贞 曾庆存.发展方程差分格式的构造和应用[J].大气科学,1982,6(1):88-94. 被引量:4
  • 8Brown P N,Saad Y.Hybrid Krylov methods for nonlinear systems of equations.SIAM J.Sci.Stat.Comput.,1990,11:450-481 被引量:1
  • 9Brown P N,Saad Y.Convergence theory of nonlinear Newton-Krylov algorithms.SIAM J.Opt.,1994,4:297-330 被引量:1
  • 10Brown P N.A local convergence theory for combined inexact-Newton/finite-difference projection methods.SIAM J.Numer.Anal.,1987,24:407-434 被引量:1

二级参考文献5

共引文献29

同被引文献44

引证文献2

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部