期刊文献+

无穷区间上模糊有界变差函数的(H)积分及数值积分 被引量:1

The(H) Integral on Infinite Interval and Its Numerical Integrations for Fuzzy-Valued Bounded Variation Functions
下载PDF
导出
摘要 基于计算模糊随机变量期望的需要,文献[9]定义了无穷区间上的模糊Henstock积分,讨论了(FH)可积的有界模糊数值函数的求积规则,给出了误差估计.考虑到有界变差函数形式的模糊随机变量期望的计算,进一步讨论了无穷区间上模糊有界变差函数Henstock积分的求积公式及误差估计. The concept of the fuzzy Henstock integral on infinite interval is proposed in reference to [9]. In order to calculate the expectation of fuzzy random variables, and some quadrature rules and the error estimates for fuzzy-valued bounded functions are given. In this paper, quadrature rules and error estimates for the fuzzy-valued bounded variation functions on infinite integral are discussed.
作者 汪玲
出处 《甘肃科学学报》 2007年第3期34-36,共3页 Journal of Gansu Sciences
基金 甘肃省自然科学基金资助项目(3ZS041-A25-004)
关键词 无穷区间 模糊有界变差函数 模糊(H)积分 数值积分 infinite interval fuzzy-valued bounded variation functions fuzzy Henstock integral numerical integrations
  • 相关文献

参考文献13

  • 1Congxin Wu,Zengtai Gong.On Henstock Integral of Fuzzy-number-valued Functions[J].Fuzzy Sets and Systems,2001,120:523-532. 被引量:1
  • 2R Goetschel Jr,W Voxman,Elementary Fuzzy Calculus[J].Fuzzy Sets and Systems,1986,18:31-43. 被引量:1
  • 3S G Gal.Approximation Theory in Fuzzy Setting[J].In:G.A.Anastassion.Handbook of Analytic-Computatioanl Menthods in App-lied Mathematics,Chapman & Hall,CRC Press,Boca Rotan,London,New York,Washington DC,2000(Chapter 13). 被引量:1
  • 4M.Friedman,Ma Ming,Kandel A.Solutions to Fuzzy Integral Equations with Arbitrary Kennels[J].Internat J Approx Reason,1999,20:246-262. 被引量:1
  • 5Wu Hsing-Chung.Evaluate Fuzzy Riemann Integrals Using the Monte Carlo Menthod[J].J Math Anal Appl,2001,264:324-343. 被引量:1
  • 6Wu Hsing-Chung.The Fuzzy Riemann Integral and Its Numerical Integration[J].Fuzzy Sets and Systems,2002,110:1-25. 被引量:1
  • 7Wu Hsing-chung.The Improper Fuzzy Riemann Integral and Its Numbericl Integration[J].Information Sciences,1998,111:109-137. 被引量:1
  • 8Barnabas BeDe,Sorin G Gal.Quadrate Rules for Integrals of Fuzzy-number-valued Functions[J].Fuzzy Sets and Systems,2004,145:359-380. 被引量:1
  • 9汪玲,巩增泰.无穷区间上模糊(H)积分及数值积分:分式与误差[J].甘肃科学学报,2006,18(1):6-10. 被引量:5
  • 10吴从炘 马明.模糊分析学基础[M].北京:国防工业出版社,1991.84-96. 被引量:44

二级参考文献11

  • 1吴从 马明.模糊分析学基础[M].北京:国防工业出版社,1991.. 被引量:5
  • 2Hsing-chung Wu.Evalate Fuzzy Riemann Integrals Using the Monte Carol Menthod[J].J Math Anal Appl,2001,264(2):324-343. 被引量:1
  • 3Hsing-chung Wu.The Fuzzy Riemann Integral and Its Numerical Integration[J].Fuzzy Sets and Systems,2000,110(1):1-25. 被引量:1
  • 4Hsing-chung Wu.The Improper Fuzzy Riemann Integral and Its Numerical Integration[J].Information Sciences,1998,111(1-4):109-137. 被引量:1
  • 5Barnabas Bede,Sorin G Gal.Quadrate Rules for Integrals of Fuzzy-number-valued Functions[J].Fuzzy Sets and Systems,2004,145(3):359-380. 被引量:1
  • 6Anastassiou G A,Gal S G.On a Fuzzy Trigonometric Approximation Theorem of Weierstrass-type[J].J Fuzzy Math,2002,9(3):701-708. 被引量:1
  • 7Lee Peng-yee.Lanzhou Lectrues on Henstrock Integration[M].World Scientific,1989. 被引量:1
  • 8Congxin Wu,Zengtai Gong.On Henstock Integral of Fuzzy-number-valued Functions[J].Fuzzy Sets and Systems,2001,120(3):523-532. 被引量:1
  • 9Geoetschel R Jr,Voxman W.Elementary Fuzzy Calculus[J].Fuzzy Sets and Systems,1986,18(1):31-43. 被引量:1
  • 10Gal S G.Approximation Theory in Fuzzy Setting[A].Anastassion G A.Handbook of Analytic-computational Menthods in Applied Ma-thematics[C].Chapman & Hall,CRC Press,Boca Rotan,London,New York,Washington DC,2000. 被引量:1

共引文献47

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部