期刊文献+

基于近似Riemann解的有限体积ALE方法 被引量:5

A Finite Volume ALE Method Based on Approximate Riemann Solution
下载PDF
导出
摘要 研究二维平面坐标系和二维轴对称坐标系中四边形网格上可压缩流体力学的有限体积ALE(Arbitrary Lagrangian Eulerian)方法.数值方法采用节点中心有限体积法,数值通量采用适用于任意状态方程的HLLC(Harten-Lax-Van Leer-Collela)通量.空间二阶精度通过用WENO(weighted essentially non-oscillatory)方法对原始变量进行重构获得,时间离散采用两步显式Runge-Kutta格式.数值例子显示,方法具有良好的激波分辨能力和高精度的数值逼近能力.  ALE(Arbitrary Lagrangian Eulerian) finite volume method for compressible fluid flows on moving quadrilateral meshes in two dimensional planar coordinates and axisymmetric coordinates is studied.A vertex-centered finite volume method and an HLLC numerical flux adapted to various equations of state are employed.A second order accuracy in space is achieved by using a reconstruction of primitive variables based on WENO approach.An explicit two-stage Runge-Kutta time-stepping scheme is used in discretization of time.The method offers accurate and robust solutions in capturing strong shock,contact discontinuities and material interface on arbitrarily moving grids.
出处 《计算物理》 CSCD 北大核心 2007年第5期543-549,共7页 Chinese Journal of Computational Physics
基金 国家自然科学基金(10471011)资助项目
关键词 可压缩流体力学 有限体积方法 HLLC通量 ALE方法 compressible fluid flow finite volume methods HLLC flux ALE methods
  • 相关文献

参考文献13

  • 1Hughes T J R, Liu W K, Zimmerman T K. Lagrangian-Eulerian finite element formulation for incompressible viscous flows[J]. Comput Methods Appl Mech Eng, 1981,29:329. 被引量:1
  • 2Nomura T, Hughes T J R. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body [ J]. Comput Methods Appl Mech Eng, 1992,95 : 115. 被引量:1
  • 3Donea J, Giuliani S, Halleux J P. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions [J]. Comput Methods Appl Mech Eng, 1982, 33:689. 被引量:1
  • 4Hirt C W, Amsden A A, Cook H K. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[ J]. J Comput Phys, 1974, 14:27. 被引量:1
  • 5Hong Luo, Baum J D, Lohner R. On the computation of multi-material flows using ALE formulation[ J ]. J Comput Phys,2004,194 : 304. 被引量:1
  • 6Godunov S K. A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics[J]. Ma Sb, 1959,47 : 357. 被引量:1
  • 7Davis S F.Simplified second-order Godunov-type methods[ J]. SIAM Sci and Stat Comput, 1988,9:445. 被引量:1
  • 8Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL-Riemann solver[ J]. Shock Waves, 1994,4:25. 被引量:1
  • 9Toro E F. Riemann solvers and numerical methods for fluid dynamics[ M]. Berlin Heidelberg: Springer-Verlag, 1999. 被引量:1
  • 10Friedrich O. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids[ J ]. J Comput Phys, 1998,144 : 194. 被引量:1

同被引文献12

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部