期刊文献+

参数激励双摆的建模与动力学分析 被引量:3

Modeling of Parametrically Excited Double Pendulum and Dynamical Analysis
下载PDF
导出
摘要 参数激励双摆属两自由度时变系统,是研究多自由度系统以及弹性体梁参激振动的基础。采用拉格朗日方法建立参数激励双摆的控制微分方程,通过多尺度法对其线性化方程进行分析,获得稳定性边界。并应用直接积分法对稳定性边界的正确性进行验证。 Parametrically excited double pendulum belongs to 2 degree freedom time-varying system,it is a basis to study nonlinear dynamics of multi-degree freedom system and elastic beam. In this paper, the governing differential equations of double pendulum is established with the Lagrange methods, the stability margin of corresponding linear equations are obtained by the multiple scale method. And the result is verified by the direct numerical integration.
出处 《苏州大学学报(工科版)》 CAS 2007年第3期47-51,共5页 Journal of Soochow University Engineering Science Edition (Bimonthly)
关键词 双摆 参数激励 稳定性边界 多尺度法 double pendulum parametrically excitation stability margin multiple scale method
  • 相关文献

参考文献8

二级参考文献23

  • 1铁摩辛柯S P 张福范(译).弹性稳定理论[M].北京:科学出版社,1965.. 被引量:2
  • 2胡海昌,弹性力学的变分原理及其应用,1981年 被引量:1
  • 3Chajes A,Principles Structurestabilitytheory,1974年 被引量:1
  • 4张福范(译),弹性稳定理论,1965年 被引量:1
  • 5Kane TR,Ryan RR,Banerjee AK.Dynamics of a cantilever beam attached to a moving base.Journal of Guidance,Control,and Dynamics,1987,10(2): 139~151 被引量:1
  • 6Nayfeh AH,Mook DT.Nonlinear Oscillations.New York: John Wiley & Sons,1979.304~321 被引量:1
  • 7Hyun SH,Yoo HH.Dynamic modeling and stability analysis of axially oscillating cantilever beams.Journal of Sound and Vibration,1999,228(3): 543~558 被引量:1
  • 8Chin CM,Nayfeh AH.Three-to-one internal resonances in hinged-clamped beams.Nonlinear Dynamics,1997,12(2): 129~154 被引量:1
  • 9Chin CM,Nayfeh AH.Three-to-one internal resonances in parametrically excited hinged-clamped beams.Nonlinear Dynamics,1999,20(2): 131~158 被引量:1
  • 10Kar RC,Dwivedy SK.Non-linear dynamics of a slender beam carrying a lumped mass with principal parametric and internal resonances.International Journal of Non-Linear Mechanics,1999,34(3): 515~529 被引量:1

共引文献58

同被引文献27

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部