期刊文献+

语音预测的LMS方法及性能分析

LMS Algorithms of Speech Prediction and Its Performance Analysis
下载PDF
导出
摘要 传统的语音处理技术忽视了语音中可能存在的非线性结构,因而限制了处理能力的进一步提高,通过语音预测模型的基于最小均方误差的自适应预测分析,讨论了数据集平均对LMS算法瞬态特征的影响和步长对均方误差的影响。通过LMS滤波器的过渡特性及其学习曲线的实验仿真,证实了小步长理论的结果与实验结果之间的紧密一致。 Traditional models for production of speech neglects nonlinear structure known to be presented in the speech signals, and this manifests itself an inferior ability to discriminate speech sounds. In this work, through the adaptive prediction analysis based on the least mean square error for speech prediction model ,the influence of data serial average on LMS arithmetic's transient feature is discussed and analyzed,as well as influence of step on lean mean square error. Besides,transfer character of I.MS filters and learning curves from simulation that manifest small step theory laboratorial results is sufficient identical with small- step theory.
作者 郑珠锋 尹明
机构地区 军械工程学院
出处 《现代电子技术》 2007年第17期4-5,13,共3页 Modern Electronics Technique
基金 教育部回国人员科研启动基金资助([2004]527)
关键词 语音建摸 LMS 小步长理论 学习曲线 speech modeling LMS small - step theory learning curve
  • 相关文献

参考文献5

二级参考文献24

  • 1姚天任 孙洪.现代数字信号处理[M].武汉:华中科技大学出版社,2002.121-125. 被引量:11
  • 2Singer A C, Womell G W, Oppenheim A V.Codebook prediction: A nonlinear signal modeling paradigm. Proceeding of International Conference on. Acoustics, Speech, Signal Processing, 1992,5:325- 328. 被引量:1
  • 3Thyssen J, Nielseny H, Hansen S D. Nonlinear short-term prediction in speech coding. ICASSP-94(1): 185-188. 被引量:1
  • 4Fainter J D, Sidorowich J J. Predicting chaotic tTime series. Physical Review Letters, 1987, 59(8): 845-848. 被引量:1
  • 5Casdagli M. Nonlinear prediction of chaotic time series. Physica D, 1989, 35 : 335- 356. 被引量:1
  • 6Packard N H, Crutchfield J P, Farmer J D, et al.Geometry from a time series. Physical Review Letters, 1980, 45(9): 712-716. 被引量:1
  • 7Takens F. Detecting strange attractors in turbulence. Dynamical Systenzs and Turbulence, 1981,898(1): 365-381. 被引量:1
  • 8Abarbanel H D I, Brown R R, Sidorowich J J, et al. Analysis of observed chaotic data. Reviews of Modem Physics, 1993, 4(65): 1 344-1 346. 被引量:1
  • 9Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction.Physical Review A, 1992,45:3 403-3 411. 被引量:1
  • 10王宏禹,随机数字信号处理,1988年 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部