期刊文献+

碳纳米管制备及其生长机制研究 被引量:2

Synthesis and Mechanism of Carbon Nanotubes with Cobalt Salt as Catalyst Precursor
下载PDF
导出
摘要 采用乙醇催化燃烧法,以钴盐作为催化剂先体、薄铜片作为基底制备碳纳米管。分别以氯化钴、硝酸钴和硫酸钴作为催化剂先体,研究了不同催化剂先体对碳纳米管生长的影响;利用扫描电镜,透射电镜对碳纳米材料的形貌和结构进行了表征,研究了不同钴盐的催化剂先体对碳纳米管形态与结构的影响,讨论了碳纳米管的生长机制。实验发现,其他制备条件相同,当催化剂先体为氯化钴时,碳纳米管与大量絮状杂质缠绕在一起;当催化剂先体为硝酸钴时,碳纳米管容易形成弯曲、不规则的波浪形结构;而当催化剂先体为硫酸钴时,实验所得的碳纳米材料几乎全为取向规则、直径均一的碳纳米纤维,只观察到少量碳纳米管。 The preparation of carbon nanotubes by ethanol catalytic combustion technique was reported. Cobalt salt was employed as catalyst precursors, copper plate as substrate and ethanol as carbon source. Cobalt chloride,cobalt nitrate and cobalt sulfate were employed as catalyst precursor to study the influence of catalysts on carbon nanotubes growth, respectively. The morphology and microstructure of the obtained carbon nanotubes was examined, the growth mechanism was discussed. Entangled and nonseparated carbon nanotubes are aggregated together when the catalyst precursor is cobalt chloride, while straight and uniform carbon nanotubes are obtained when the catalyst precursor is cobalt sulfate. In the case of using cobalt nitrate as catalyst precursor, the carbon nanotubes tend to form helical and disordered structure.
出处 《微纳电子技术》 CAS 2007年第7期60-62,共3页 Micronanoelectronic Technology
基金 北京市留学归国人员科技活动择优资助项目(66062021)
关键词 碳纳米管 碳纳米纤维 催化剂先体 carbon nanotubes carbon nanofibers catalyst precursor
  • 相关文献

参考文献13

  • 1IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991,354(7) :56-58. 被引量:1
  • 2FRANK S, PONCHARAL P, WANG Z L. Carbon nanotube quantum resistors[J]. Science, 1998, 280(5370):1744-1746. 被引量:1
  • 3KIM P, LIEBER C M. Nanotube nanotweezers[J]. Science, 1999, 286(5447) :2148-2150. 被引量:1
  • 4KONG J, ZHOU C, MIROURGO A. Synthesis, integration, and electrical properties of individual single - walled earbon nanotubes[J].Appl Phys A, 1999, 69(3): 305-308. 被引量:1
  • 5GIORDANO R, SERP P, KALCK P, et al. Preparation of rhodium catalysts supported on carbon nanotubes by a surface mediated organometallic reaction[J].Eur Inorg Chem, 2003, 4(2) :610-617. 被引量:1
  • 6SHIM M, JAVEY A, KAM N W S, et al. Polymer functionalization for air - stablen-type carbon nanotube field-effect transisitors[J]. J Am Chem Soc, 2001, 123:11512-11513. 被引量:1
  • 7LIU C, CONG H T, LI F, et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method[J].Carbon, 1999, 37 (11) : 1865-1868. 被引量:1
  • 8THESS A, LEE R, NIKOLAEV P, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science, 1996, 273 (5374) : 483-487. 被引量:1
  • 9SHAJIHAN M, MO Y H, FAZLE KIBRIA A K M, et al. High growth of SWNTs and MWNTs from C2H2 decomposition over Co-Mo/MgO catalysts[J].Carbon, 2004, 42: 2245- 2253. 被引量:1
  • 10KANZOW H, LENSKI C, DING A. Single-wall carbon nanotubes diameter distributions calculated from experiment parameters[J].Phys Rev B, 2001, 63(6) : 125402-125408. 被引量:1

二级参考文献2

共引文献14

同被引文献28

  • 1邹志青,赵建龙.纳米技术和生物传感器[J].传感器世界,2004,10(12):6-11. 被引量:8
  • 2扬州大学.纳米CaC03固定生物分子制备生物传感器的方法:中国专利,200610096189.4.2006-09-25. 被引量:1
  • 3上海应用物理所研制出新型电化学ATP生物传感器[EB/OL].[ 2007 - 11 - O1 ]. http ://www. bioon. com/biology/bioinfomatics/ 286539. shtml. 被引量:1
  • 4浙江大学.一种含有水凝胶-碳纳米管的味觉传感器的制备方法:中国专利,200710067659.9.2007-08-22. 被引量:1
  • 5IIJIMA S. Helical microtubules of graphitic carbon. Nature, 1991, 354(7) :56 -58. 被引量:1
  • 6纳米技术[EB/OL].[ 2007 - 10 - 05]. http ://www. comva, cn/Overlapping_research/2007 - 3 - 28/NaMiJiShu-kdsg627. htm. 被引量:1
  • 7新兴市场:纳米技术传感器[EB/OL].[2007-11-09].hup://www. istis, sh. cn/list/list. asp? id =2119. 被引量:1
  • 8“纳米星”有望成为超级化学传感器[EB/OL].[2007-10-24].http ://wvcw. hxzxs. cn/articleview/2006 -5 -6/article view 2891. htm. 被引量:1
  • 9硅材料纳米生物传感器可望大量生产[EB/OL].[2007-10-24 ]. http ://www. bioon. corn/biology/news/277961. shtml. 被引量:1
  • 10中科院制出新型电化学DNA纳米生物传感器[EB/OL].[2007-10 - 25 ]. http://www. sciei. com/news/engineer/Material/200606/ news 7021. html. 被引量:1

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部