期刊文献+

一种针对拖尾噪声的鲁棒神经网络信号检测算法 被引量:1

A Detection Algorithm of Robust Neural Network for Heavy-tailed Noise
下载PDF
导出
摘要 与高斯噪声相比,拖尾有更多的异常值,利用传统的神经网络不能有效的检测信号。该文提出一种基于中值滤波的鲁棒神经网络进行处理,首先利用中值滤波抑制异常值,进一步利用BP(Back Propagation)神经网络消除残留噪声,检测目标信号。基于误差分析的实验结果表明,与传统神经网络相比,所提出的方法不仅能更好地消除拖尾噪声,有效检测信号,而且能有效检测高斯噪声中的目标信号,具有很好的鲁棒性和自适应特性。 Compared with Gaussian noise, Heavy-tailed noise has more outliers, and the traditional neural network can not suppress outliers. A new neural network based on median filter is proposed. After suppressing the outliers in signal through median filter, the BP (Back Propagation) is used and remained noise is eliminated further. The experiment based on the error analyses shows that compared with the traditional neural network, the proposed method can suppress heavy-tailed noise and detect target signal more effectively. It can, perform well for both heavy-tailed noise and Gaussian noise background, which shows its robustness and adaptiveness.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第8期1864-1867,共4页 Journal of Electronics & Information Technology
基金 全国优秀博士学位论文作者专项基金(200237)资助课题
关键词 信号检测 神经网络 BP算法 拖尾噪声 中值滤波 Signal detection Neural network BP algorithm Heavy-tailed noise Median filter
  • 相关文献

参考文献10

  • 1Barkat B and Abed-Meraim K.An effective technique for the IF estimation of FM signals in heavy-tailed noise.Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology[C].Darmstadt,Germany,2003:637-640. 被引量:1
  • 2Brcich R F,Iskander D R,and Zoubir A M.The stability test for symmetric alpha-stable distributions[J].IEEE Trans.on Signal Processing,2005,53(3):977-986. 被引量:1
  • 3Akhtar S,Elshafei-Abmed M,and Ahmed M S.Detection of helicopters using neural nets[J].IEEE Trans.on Instrumentation and Measurement,2001,50(3):749-756. 被引量:1
  • 4Wang Zhishun,He Zhenya,and Chen J D Z.Robust time delay estimation of bioelectric signals using least absolute deviation neural network[J].IEEE Trans.on Biomedical Engineering,2005,52(3):454-462. 被引量:1
  • 5Huber P.Robust estimation of a location parameter[J].Ann,Math,Stat,1964,35:1753-1758. 被引量:1
  • 6Djurovic I,Katkovnik V,and Stankovic L.Instantaneous frequency estimation based on the robust spectrogram.IEEE International Conference on Acoustics,Speech,and Signal Processing[C],Salt Lake City,Utah,2001,6:3517-3520. 被引量:1
  • 7Fitch J P,Coyle E J,and Galagher N C,et al..Median filtering by threshold decomposition[J].IEEE Trans.on Acoust.Speech,Signal Proc.,1984,32(6):1183-1188. 被引量:1
  • 8靳蕃编著..神经计算智能基础 原理·方法[M].成都:西南交通大学出版社,2000:455.
  • 9张立明编著..人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993:237.
  • 10Tsakalides P,Reveliotis P,and Nikias C L.Scalar quantisation of heavy-tailed signals[J].IEE Proceedings Vision,Image and Signal Processing,2000,147(5):475-484. 被引量:1

同被引文献14

  • 1简涛,何友,苏峰,田伟.小波变换在雷达信号检测中的应用[J].海军航空工程学院学报,2006,21(1):121-126. 被引量:18
  • 2简涛,何友,苏峰,李炳荣.一种基于小波变换的信号恒虚警率检测方法[J].信号处理,2006,22(3):430-433. 被引量:6
  • 3Wehner D R. High-resolution radar [M]. Boston: Artech House, 1995: 15-21. 被引量:1
  • 4Robey F C, Fuhrmann D R, Kelly E J, et al. A CFAR adaptive matched filter detector [J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216. 被引量:1
  • 5Gerlach K, Steiner M J. Adaptive detection of range distributed targets [J]. IEEE Transactions on Signal Processing, 1999, 47(7): 1844-1851. 被引量:1
  • 6Yao K. A representation theorem and its applications to spherically invariant random processes [J]. IEEE Transactions on Information Theory, 1973, 19(5): 600-608. 被引量:1
  • 7Papoulis A, Pillai S U. Probability, random variables and stochastic processes[M]. 4 ed. New York: McGraw-Hill, 2002: 65-70. 被引量:1
  • 8Van T H L. Detection, estimation, and modulation theory, part I: detection, estimation, and linear modulation theory [M]. New York: Wiley, 2001: 127-135. 被引量:1
  • 9Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(1): 115-127. 被引量:1
  • 10Rangaswamy M. Statistical analysis of the nonhomogeneity detector for non-Gaussian interference backgrounds [J]. IEEE Transactions on Signal Processing, 2005, 53(6): 2101-2111. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部