摘要
The modeling effects of constituents and dispersoids on the tensile ductility of aluminum alloy were studied.The results show that the tensile ductility decreases with the increase of the volume fraction and size of constituents.Thus,purification can improve the tensile ductility by decreasing the volume fraction of constituents(normally compositions of Fe and Si)and the first-class microcracks.The model also indicates that the tensile ductility decreases with the increase in the volume fraction of dispersoids.Decreasing the volume fraction of dispersoids along the grain boundaries by proper heat-treatment and improving the cohesion strength between dispersoids and matrix can also improve the tensile ductility by decreasing the volume fraction of the second-class microcracks.
The modeling effects of constituents and dispersoids on the tensile ductility of aluminum alloy were studied. The results show that the tensile ductility decreases with the increase of the volume fraction and size of constituents. Thus, purification can improve the tensile ductility by decreasing the volume fraction of constituents (normally compositions of Fe and Si) and the first-class microcracks. The model also indicates that the tensile ductility decreases with the increase in the volume fraction of dispersoids. Decreasing the volume fraction of dispersoids along the grain boundaries by proper heat-treatment and improving the cohesion strength between dispersoids and matrix can also improve the tensile ductility by decreasing the volume fraction of the second-class microcracks.
基金
Project (2005CB623704) supported by National Key Fundamental Research and Development Program of China