摘要
An analytical model is presented to calculate the disassociation probability and the external quantum efficiency at high field in doped organic electrophosphorescence(EPH) devices. The charge recombination process and the triplet(T)-triplet(T) annihilation processes are taken into account in this model. The influences of applied voltage and the thickness of the device on the disassociation probability, and of current density and the thickness of the device on the external quantum efficiency are studied thoroughly by including and ignoring the disassociation of excitons. It is found that the dissociation probability of excitons will come close to 1 at high electric field, and the external EPH quantum efficiency is almost the same at low electric field. There is a large discrepancy of the external EPH quantum efficiency at high electric field for including or ignoring the disassociation of excitons.
An analytical model is presented to calculate the disassociation probability and the external quantum efficiency at high field in doped organic electrophosphorescence(EPH) devices. The charge recombination process and the triplet(T)-triplet(T) annihilation processes are taken into account in this model. The influences of applied voltage and the thickness of the device on the disassociation probability, and of current density and the thickness of the device on the external quantum efficiency are studied thoroughly by including and ignoring the disassociation of excitons. It is found that the dissociation probability of excitons will come close to 1 at high electric field, and the external EPH quantum efficiency is almost the same at low electric field. There is a large discrepancy of the external EPH quantum efficiency at high electric field for including or ignoring the disassociation of excitons.
基金
Excellent Youth Foundation of Hunan Province(03JJY1008)
Science Foundation for Post-doctorate of China(2004035083)
National Science Foundation of Hunan Province(06JJ20034)