摘要
应用图包装的理论和方法研究n(n≥5)阶(p,q)图的泛圈性,得到当q≥C2p-1-2时是泛圈图的充要条件是:(1)G不为C2,8,C3,8,C4,9,K2∨(K1+K2,2),K1+K2,4;(2)G不为C1,n,C3,7,C2,7,C2,6,C2,5,2K3,K2+K3,K1+K2,3和C4+K1及其支撑子图.
The pancyclic of the n(n ≥ 5) -order (p,q) -- graphs is discussed by using the method and theory of graph packing. The sufficient and necessary condition for the pancyclic graphs with n(n ≥ 5) -order (p,q) -- graphs at size q≥C2p-1-2 is obtained as follows: (1)the pancyclic graphs are not the graphs of C2,8,C3,8,C4,9,K2∨(K1+K2,2),K1+K2,4;(2)Gthe pancyclic graphs are not the graphs of C1,n,C3,7,C2,7,C2,6,C2,5,2K3,K2+K3,K1+K2,3, spanning subgraphs are obtained. K1 + K2,3, C4 + K1 and their spanning subgraphs are obtained.
出处
《广西科学》
CAS
2007年第3期206-208,共3页
Guangxi Sciences