期刊文献+

RBF—ARX模型在液位系统建模中的应用 被引量:6

Modeling of nonlinear liquid-level system using RBF-ARX model
下载PDF
导出
摘要 针对单容液位系统紊流时的非线性特征,采用RBF—ARX模型对单容液位系统进行离线动态特性建模的研究;分别在液位高中低三个工作点建立了其局部线性ARX模型,它们的单位阶跃响应存在巨大差异,证实了整个系统具有较强的非线性;讨论了RBF—ARX模型结构的选取,模型参数辨识,RBF参数优化等问题;模型的预测输出和仿真结果,证实了RBF—ARX模型在非线性系统建模和辨识中的有效性。 This paper focuses on the modeling of liquid-level system involving turbulent flow in a single water tank device by using RBF-ARX model. The dynamic global RBF-ARX and local linear ARX models at high, middle and low level working point are built respectively. The system nonlinearity is shown by the differences of the unit responses to the three local ARX models. Emphasis is also put on the design of the structure of RBF-ARX model, identification, parameter optimization and so on. The results of simulation studies finally show the effectiveness of RBF-ARX model for the modeling and identification of nonlinear systems.
作者 任林 彭辉
出处 《计算机测量与控制》 CSCD 2007年第8期1023-1026,共4页 Computer Measurement &Control
基金 国家自然科学基金(60443008)。
关键词 液位系统 水箱 非线性系统 建模 RBF-ARX模型 Liquid-level system water tank nonlinear system modeling RBF-ARX model
  • 相关文献

参考文献6

  • 1Peng H,Ozaki T,Toyoda Y,et al.RBF-ARX model-based nonlinear system modeling and predictive control with application to a decomposizition process[J].Control Engineering Practice,2004,(12):191-203. 被引量:1
  • 2Katsuhiko Ogata K.现代控制工程[M].北京:清华大学出版社,2006. 被引量:1
  • 3舒迪前 ... ..自适应控制[M],1993.
  • 4Peng H,Ozaki T,Valerie H O,et al.A parameter optimization method for radial basis function type models[J].IEEE Transactions on Neural Networks,2003:432-438. 被引量:1
  • 5Marquart D.An algorithm for least-squares estimation of nonlinear parameter,SIAMJ Appl.,Math.,1963,11:431-441. 被引量:1
  • 6徐仲等编著..矩阵论简明教程[M].北京:科学出版社,2001:178.

同被引文献28

  • 1王卓,李平,郭烁.基于多模型的非线性系统广义预测控制[J].微计算机信息,2004,20(8):33-34. 被引量:9
  • 2Li Ning,Li Shaoyuan, Xi Yugeng.Multi-model predictive control based on the Takagi-Sugeno fuzzy models: a case study[J].Informarion Scienees,2004,165:247-263. 被引量:1
  • 3Hui Peng, Tohru Ozaki, Yukihiro Toyoda, et al. Kazushi Nakano Valerie Haggan-Ozaki, Masafumi Mori , RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposizition process [J]. Control Engineering Practice, 12 (2004) 191203. 被引量:1
  • 4Hui Peng, Tohru Ozaki, Valerie Haggan-Ozaki, yukihiro Toyoda, A Parameter Optimization Method for Radial Basis Function Type Models [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, MARCH 3003 432438. 被引量:1
  • 5Marquart D. An algorithm for least--squares estimation of nonlinear parameter [J]. SIAM J Appl. Math. , vol 11, pp. 431-441, 1963. 被引量:1
  • 6王蓬,李少远.一类非线性系统的多模型预测控制[J].控制与决策,2007,22(10):1113-1118. 被引量:15
  • 7弓岱伟,孙德敏,郝卫东,胡志宏.基于多模型切换阶梯式广义预测控制的电站锅炉主汽温控制[J].中国科学技术大学学报,2007,37(12):1488-1493. 被引量:15
  • 8Bemardini D, Bemporad A. Stabilizing model predictivecontrol of stochastic constrained linear systems[ J]. IEEETransactions on Automatic Control, 2012,57 ( 6 ) : 1468-1480. 被引量:1
  • 9Clarke D W, Mohtadi C P. Roperties of Generalized Pre-dictive Control[ J]. Automatica,1989,25(6) :859 -875. 被引量:1
  • 10Cueli J R, Bordons C. Iterative nonlinear model predic-tive control. Stability, robustness and applications [ J ].Control Engineering Practice,2008,16(9) :1023 - 1034. 被引量:1

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部