期刊文献+

基于改进蚁群算法的飞行仿真转台的控制优化 被引量:2

Study on the Improved ACA-based Parameters Optimization of NLPID Controller for Flight Simulator
下载PDF
导出
摘要 提出了一种用改进蚁群算法优化飞行仿真转台非线性PID控制参数的新策略,借助相遇搜索策略和信息素残留系数的自适应控制思想对基本蚁群算法进行了改进,设计了一种基于改进蚁群算法优化飞行仿真转台非线性PID(NLPID)控制参数的飞行仿真转台系统结构,在对非线性PID控制参数进行优化时采用了时间乘以误差绝对值积分最小性能指标,最后将用改进蚁群算法优化后的控制参数应用于某型高性能飞行仿真转台。实验表明,采用改进蚁群算法优化非线性PID控制参数的飞行仿真转台系统可从带噪声的输入信号中合理地提取出微分信号,并且对噪声具有很强的滤波作用,整个系统响应速度快,并具有较强的鲁棒性。 A novel NLPID optimization strategy for flight simulator was proposed. In order toenhance the global convergence performance of ACA, the basic ACA was improved by using meeting search strategy and trail decay coefficient self-adaptive adjusting ideology. Furthermore, an improved ACA-based NLPID parameters optimization structure for flight simulator was designed. ITAE performance criteria was adopted in the improved )A CA. Finally, the optimized parameters using improved ACA were applied to a high performance flight simulator. The experimental results demonstrate that the NLPID controller has strong robustness against noise. This proposed ACAbased HLPID parameters optimization strategy can also be used to develope other simulation servo system controllers.
出处 《中国空间科学技术》 EI CSCD 北大核心 2007年第4期28-33,43,共7页 Chinese Space Science and Technology
基金 国家自然科学基金(60604009) 航空科学基金资助项目(2006ZC51039) 北京航空航天大学"蓝天新秀"基金资助项目
关键词 蚁群算法信息素 非线性比例-微分-积分控制器 参数优化 飞行仿真转台 Ant colony algorithm Pheromone Nonlinear proportional-integral-differenceParameters optimization Flight simulator
  • 相关文献

参考文献9

  • 1COLORNI A,DORIGO M,MANIEZZO V,et al.Distributed Optimization by Ant Colonies[C].Paris:Proceedings of the 1st European Conference on Artificial Life.1991:134-142. 被引量:1
  • 2DORIGO M,MANIEZZO V,COLORNI A.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B,1996,26(1):29-41. 被引量:1
  • 3段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 4ALMENDINGER F J,ELM J P,MARCHETTI J,et al.Flight Motion Simulator Performance Improvements from Advanced Data Acquisition[C].Orlando:Proceedings of SPIE-the International Society for Optical Engineering.2001,4366:308-319. 被引量:1
  • 5韩京清.非线性PID控制器[J].自动化学报,1994,20(4):487-490. 被引量:229
  • 6XIONG W Q,WEI P.A Kind of Ant Colony Algorithm for Function Optimization[C].Beijing:Proceedings of the 1st International Conference on Machine Learning and Cybernetics,2002:552-555. 被引量:1
  • 7段海滨著..蚁群算法原理及其应用[M].北京:科学出版社,2005:447.
  • 8段海滨,王道波,于秀芬.基于蚁群算法的PID参数优化.武汉大学学报,. 被引量:1
  • 9王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232

二级参考文献8

共引文献658

同被引文献65

引证文献2

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部