期刊文献+

基于Hausdorff距离的行人跟踪计数方法 被引量:1

Pedestrians tracking and counting algorithm based on Hausdorff distance
下载PDF
导出
摘要 运用目标匹配和目标链,对视频中的行人进行跟踪和计数。提出了一种基于Hausdorff距离的快速目标匹配方法,利用快速匹配形成的聚类进行最佳匹配,通过目标运动速度和方向的光滑性度量来建立每个运动目标的"目标链"即运动轨迹,实验结果表明此方法保证了运动跟踪的连续性和行人计数的有效性。 Target matching and target- chain are used to track and count pedestrians in video sequences.The paper proposes a method of fast target matching based on Hausdofff distance, the best matching target is attained by clusters from fast matching, target' s velocity and direction measurement of smoothness is used to create targetchain or tracking of moving target. The experimental results show that the method ensure the continuity and effectiveness of the dynamic pedestrians tracking and counting.
作者 万力 武爱民
出处 《信息技术》 2007年第8期104-106,109,共4页 Information Technology
关键词 目标跟踪 计数 HAUSDORFF距离 目标链 target tracking counting Hausdorffdistance target-chain
  • 相关文献

参考文献8

  • 1Haritaoglu I, Harwood D, Davis L S. W4: Real - Time Surveillance of People and Their Activities, IEEE Transactions on Pattern Analysis and Machine Intelligence[J] .2000,22(8) :809 - 830. 被引量:1
  • 2刘亚,艾海舟,徐光佑.一种基于背景模型的运动目标检测与跟踪算法[J].信息与控制,2002,31(4):315-319. 被引量:141
  • 3姚敏等编著..数字图像处理[M].北京:机械工业出版社,2006:347.
  • 4李曦,曹广益,付晓薇,朱新坚.基于实时图像序列的行人跟踪计数方法[J].计算机仿真,2005,22(2):79-81. 被引量:7
  • 5Gianluca Antonini ,Jean Philippe Thiran, Counting Pedeslrians in Video Sequences Using Trajectory Clustering[ J ]. IEEE Transactions on Cilcults and Systems for Video Technology,2006, 16( 8 ) : 1008 - 1020. 被引量:1
  • 6Lalonde M, Beaulieu M, Gagnon L. Fast and Robust Optic Disc Detection Using Pyramidal Decomposition and Hausdorff- Based Templale Matching[ J ]. IEEE Transactions on Medical Imaging, 2001,20( 11 ) : 1193 - 1200. 被引量:1
  • 7Linda G.Shapiro,George C.Stockman.计算机视觉[M].北京:机械工业出版社,2005. 被引量:6
  • 8边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.

二级参考文献16

  • 1李智勇 沈振康 杨卫平.动态图象分析[M].北京:国防工业出版社,1999年.. 被引量:3
  • 2C Wren, A Azarbayejani, T Darrell, A Pentland. Pfinder: Real-time Tracking of the Human Body. IEEE Trans. PAMI, 1997,19(7):780~785 被引量:1
  • 3T Olson, F Brill. Moving Object Detection and Event Recognition Algorithms for Smart Cameras. Proc. DARPA Image Understanding Workshop, May 1997 被引量:1
  • 4I Haritaoglu, D Harwood, L S Davis. W4: Rea-Time Surveillance of People and Their Activities. IEEE Trans. PAMI, 2000,22(8):809~830 被引量:1
  • 5C Stauffer, W E L Grimson. Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans. PAMI, 2000,22(8):747~757 被引量:1
  • 6R T Collins, A J Lipton, T Kanade. A System for Video Surveillance and Monitoring. Proc. Am. Nuclear Soc.(ANS) Eighth Int'l Topical Meeting Robotic and Remote Systems, Apr. 1999 被引量:1
  • 7C Anderson, P Burt, G Can der Wal. Change Detection and Tracking Using Pyramid Transformatin techniques. Proc. SPIE-Intelligent Robots and Computer Vision, 1985,(579):72~78 被引量:1
  • 8J Barron, D Fleet, S Beauchemin. Performance of Optical Flow Techniques", International Journal of Computer Vision, 1994,12(1):42~77 被引量:1
  • 9A M Tekalp. Digital Video Processing. Rochester, NY, 1995 被引量:1
  • 10F Liu, R W Picard. Finding Periodicity in Space and Time. Proc. Int'l Conf. Computer Vision, 1998,376~383 被引量:1

共引文献151

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部