期刊文献+

大孔吸附树脂吸附乳酸及乳酸与谷氨酸的分离 被引量:18

Adsorption and Separation of Lactic Acid and Glutamic Acid by Macroporous Resin Adsorbents
下载PDF
导出
摘要 通过筛选,得到大孔吸附树脂NKA-II,并用其对乳酸进行分离.测定了该树脂对乳酸与谷氨酸的吸附选择系数,得到了乳酸在NKA-II上的吸附等温线,并对其吸附动力学和动态吸附进行了研究.结果表明,NKA-II对乳酸和谷氨酸的吸附选择系数KGL=16.19.该树脂对乳酸的吸附等温线符合Freundlich方程,在26和48℃下的相关系数R2均大于0.99,方程的特征参数n>1,属'优惠吸附'.吸附动力学研究表明,粒内扩散是吸附过程的主要控制步骤,符合Kannan-Sundaram粒内扩散模型,相关系数R2=0.9906,粒内扩散速率常数kp=6.0129mg·min0.5/g.动态吸附实验结果表明,乳酸的穿透体积比谷氨酸大110.6mL,故该树脂可以成功地应用于乳酸与谷氨酸的分离. The macroporous resin adsorbent NKA-Ⅱ was selected to separate lactic acid from the residual solution of fermentation. Adsorption behavior and selectivity of NKA-Ⅱ were studied by using static and dynamic adsorption methods, including the static equilibrium adsorption and adsorption thermodynamic properties. The results showed that the adsorbent selectivity coefficient (KG^L) of lactic acid and glutamic acid equaled to 16.19. The adsorption data were correlated with Freundlich isotherm equation, and the correlative coefficients (R^2) all exceeded 0.99 at 26 and 48 ℃. Characteristic parameter of this equation n〉1. Besides, the kinetics of adsorption of NKA-Ⅱ was mainly controlled by intra-particle diffusion, and it fit well into the Kannan-Sundaram intra-particle diffusion model. The intra-particle diffusion rate coefficient kp was 6.0129 mg.min^0.5/g. Dynamic adsorption results showed that the breakthrough volume of L-lactic acid was 140.6 mL, being 110.6 mL over the breakthrough volume of glutamic acid. So macroporous adsorbent NKA-Ⅱ could be employed as the sorbent to separate lactic acid and glutamic acid.
出处 《过程工程学报》 EI CAS CSCD 北大核心 2007年第4期767-772,共6页 The Chinese Journal of Process Engineering
基金 中国科学院知识创新工程重要方向基金资助项目(编号:KSCXZ-YW-G-020)
关键词 大孔吸附树脂 乳酸 吸附 谷氨酸 macroporous adsorbent lactic acid adsorption behavior glutamic acid
  • 相关文献

参考文献16

  • 1吴宇琼,李定或,吴元欣.发酵法生产乳酸的提取与精制研究进展[J].食品工业科技,2003,24(1):106-108. 被引量:16
  • 2Frieling P von,Schügerl K.Recovery of Lactic Acid from Aqueous Model Solutions and Fermentation Broths[J].Process Biochem.,1999,34:685-696. 被引量:1
  • 3Thang V H,Koschuh W,Kulbe K D.Detailed Investigation of an Electrodialytic Process during the Separation of Lactic Acid from a Complex Misture[J].J.Membr.Sci.,2005,249:173-182. 被引量:1
  • 4薛正莲,叶生梅,张继民.热再生树脂对乳酸吸附解吸性能的初探[J].四川食品与发酵,2002,38(4):24-26. 被引量:1
  • 5Davison B H,Scott C D.A Proposed Biparticle Fluidized-bed for Lactic Acid Fermentation and Simultaneous Adsorption[J].Biotechnol.Bioeng.,1992,39(3):365-368. 被引量:1
  • 6Chen C C,Ju L K.Adsorption Characteristics of Polyvinypyridine and Activated Carbon for Lactic Acid Recovery from Fermentation of Lactobacillus delbrueckii[J].Sep.Sci.Technol.,1998,33(10):1423-1437. 被引量:1
  • 7Lee H J,Xie Y,Koo Y M.Separation of Lactic Acid and Acetic Acid Using a Four-zone SMB[J].Biotechnol.Prog.,2004,20(1):179-192. 被引量:1
  • 8Aljundi I H,Belovich J M,Talu O.Adsorption of Lactic Acid from Fermentation Broth and Aqueous Solutions on Zeolite Molecular Sieves[J].Chem.Eng.Sci.,2005,60:5004-5009. 被引量:1
  • 9GB2023-2003.食品添加剂·乳酸[S]. 被引量:1
  • 10孙彦编著..生物分离工程[M].北京:化学工业出版社,1998:277.

二级参考文献28

共引文献98

同被引文献196

引证文献18

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部