摘要
具功能性反应的两种群食饵-捕食者模型:&=xg(x)-yφ(x),&=y(-d+eφ(x))当食饵种群的相对增长率g(x)与捕食者种群的捕食率φ(x)都是非线性的情况,运用微分方程稳定性理论和Poincaré-Bend ixon环域定理,探讨了系统平衡点的稳定性,给出系统极限环存在的充分条件.
Abstract: The two species prey - predator model with functional response:&=xg(x)-yφ(x),&=y(-d+eφ(x)) , is studied in this paper. By using stability methods and the Poincare - Bendixon theory,we can achieve the stability of the positive equilibrium and the existence of the limit cycle.
出处
《钦州学院学报》
2007年第3期20-22,共3页
Journal of Qinzhou University
关键词
功能性反应
食饵-捕食者
平衡点
极限环
functional response
prey - predator model
equilibrium
the limit cycle.