期刊文献+

改进自适应遗传算法在函数优化中的应用研究 被引量:32

An improved adaptive genetic algorithm and its application in function optimization
下载PDF
导出
摘要 为了改善传统自适应遗传算法的收敛速度以及局部收敛问题,根据种群适应度的集中程度,以种群的最大适应度、最小适应度以及适应度平均值这3个变量为基础,设计了改进的自适应交叉概率和变异概率来调整整个种群的交叉概率和变异概率,提出了一种基于种群适应度集中程度的改进自适应遗传算法.将该算法应用于函数优化中,仿真结果验证了其具有"快速收敛"的特点,且在很大程度上可避免遗传算法的早熟现象. To speed up convergence rates and resolve local convergence issues in traditional adaptive genetic algorithms, an improved adaptive genetic algorithm was developed. According to the concentrating degree of fitness of the populations, a kind of adaptive crossover probability and mutation probability were de- signed in terms of three variables of maximal fitness, minimal fitness and average fitness of the popula tions, whereby the crossover probabilities and mutation probabilities of the' whole populations could be ad- justed. Based on this, an improved adaptive genetic algorithm was developed. Simulation results prove that the new adaptive algorithm can converge faster than the unimproved algorithm and is highly effective at avoiding the premature convergence of the adaptive genetic algorithm.
作者 陈明杰 刘胜
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第8期875-879,共5页 Journal of Harbin Engineering University
基金 黑龙江省博士后基金资助项目(AUGA41000542) 黑龙江省自然科学基金资助项目(F2004-19)
关键词 自适应遗传算法 交叉概率 变异概率 函数优化 全局收敛 adaptive genetic algorithm crossover probability mutation probability function optimization global convergence
  • 相关文献

参考文献6

二级参考文献23

  • 1沙智明,郝育黔,郝玉山,杨以涵.基于改进自适应遗传算法的电力系统相量测量装置安装地点选择优化[J].电工技术学报,2004,19(8):107-112. 被引量:15
  • 2Holland J H. Adaptation in Nature and Artificial Systems[M]. US: The University of Michigan Press, 1975. 被引量:1
  • 3Goldberg D E.Genetic Algorithms in Search,Optimization,and Machine Learning [M].Addison-Wesley,Reading,MA,1989. 被引量:1
  • 4PAN Zhengjun,KAN Lishan,CHEN Yuping.Evolutionary Computation [M].Beijing:Tsinghua University Press and Guangxi Science and Technology Press,1998.(in Chinese) 被引量:1
  • 5Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithms [J].IEEE Trans On Systems,Man and Cybernetics,1994,24(4):656-667. 被引量:1
  • 6Shannon C E.The mathematical Theory of Communication [M].Urbana:University of Illinois Press,1992. 被引量:1
  • 7Lee Jooyoung.New Monte Carlo algorithm:entropic sampling [J].Physical Review Let,1993,71(1):211-214. 被引量:1
  • 8Lee ChangYong,Han Seung Kee.Evolutionary optimization algorithm by entropic sampling [J].Physical Review E,1998,57(3):36113617. 被引量:1
  • 9J H Holland.Adaptation in Natural Artificial Systems[M].MIT Press, 1975. 被引量:1
  • 10Masanori Sugisaka,Xinjian Fan.Adaptive Genetic Algorithm with a Cooperative Mode[C].In:Proceedings of IEEE International Symposium on Industrial Electronics,2001. 被引量:1

共引文献118

同被引文献260

引证文献32

二级引证文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部