期刊文献+

基于有偏最小最大概率回归的短期负荷预测 被引量:3

Short-term Load Forecasting Based on BMPMR
下载PDF
导出
摘要 针对电力负荷的一些特性,提出了使用非线性数据分类学习机的理论来解决短期负荷预测问题。利用有偏最小最大概率机进行数据学习分类,对采集到的信息进行分类、特征提取,形成归一的数据类型;用得到的分类数据作为有偏最小最大概率回归模型的输入进行训练预测。该方法通过核函数将输入向量从低维空间映射到高维空间,在高维空间实现了基于高阶统计信息的负荷影响因数的特征提取,既全面考虑了影响负荷预测的历史时间序列、气象等各种因素,又避免了由于输入变量过多而导致模型结构复杂、训练时间长等不足。计算实例表明,文中提出的方法用于短期负荷预测,其预测精度较高,且训练时间较短,方法可行且有效。 A non-linear data classification machine is presented to deal with the characteristics of power demand in load forecasting. BMPMC is adopted to classify the load data and extract the load characteristics among various factors. BMPMR model is trained using the data classified by BMPMC as the input of the model to accomplish the final forecasting. Using Kernel function to map the input from low-dimension to high-dimension not only avoids the complexity and long training time of the model but considers various factors comprehensively. Case studies on a real power system show that the proposed model is feasible and promising for short-term load forecasting.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2007年第4期46-49,共4页 Proceedings of the CSU-EPSA
关键词 电力系统 负荷预测 数据分类 有偏最小最大概率分类 有偏最小最大概率回归 power system load forecasting data classification biased minimax probability machine classification(BMPMC) biased minimax probability machine regression (BMPMR)
  • 相关文献

参考文献12

二级参考文献30

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:502
  • 2杨桦 任震 等.基于小波分析的电力系统短期负荷预测.全国高校电力系统及其自动化专业第十二届学术年会论文集[M].保定,1996.173-178. 被引量:2
  • 3任震 石志强 等.小波分析及其在电力系统中的应用.全国高校电力系统及其自动化专业第十二届学术年会论文集[M].,.. 被引量:1
  • 4[1]T. Masters ,Neural,Novel& Hybird Algorithms for Tim Series Pre-diction[M], John Wiley & Sons. Inc., 1995. 被引量:1
  • 5[2]A. D. Papalexopoulos and T. C. Hesterberg , A regression based approach to short term system load forecasting[C], Proceedings of 1989 PICA Conference , 1989:414-423, 被引量:1
  • 6[3]K. L. Ho , Y. Y. Hsu , C. F. Chen , T. E. Lee , C. C. Liang , T . S. Lai , and K. K. Chen , Short term load foreasting of Taiwan power system using a knowledge-based expert system[J], IEEE Tans.on Power Systems , 1990,5(4):1214-1221. 被引量:1
  • 7[4]A.M. Lanchlan , An improved novelty criterion for resource allocating networks[C] , IEE ,Artifical Neural Networks , Conference Publication , 1997:440:48-52 被引量:1
  • 8[5]D.Srinivasan, S.S.Tan , C.S.Chang and E.K.Chan ,Practical im-plentation of a hybrid fuzzy neural network for one-day-ahead load forecasting[J], IEE Proc.-Gener. Transm,1998.11(6):687-692. 被引量:1
  • 9[6]V.N. Vapnik ,The nature of statistical learning theory[M], New York: Springer, 1999. 被引量:1
  • 10[7]A. Smola and B. Scholkopf , A tutorial on support vector regression[M], NeuroCOLT Tech. Rep. TR 1998-030, Royal Holloway College , London , U.K., 1998. 被引量:1

共引文献237

同被引文献23

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部