期刊文献+

神经网络在超声脂肪肝图像识别中的应用研究 被引量:6

The application research of Neural Network for classifying the ultrasonic liver image
下载PDF
导出
摘要 本论文通过利用人工神经网络来研究脂肪肝超声图像的识别算法。通过基于空间灰度独立矩阵,空间频率分解和分形特征的特征提取,采用两层BP神经网络对正常肝脏,轻、中和重度脂肪肝脏共四类超声图像进行分类识别。实验结果表明神经网络分类器对四种肝脏超声图像的分类可以达到95.33%的正确率,其结果对实际辅助诊断很有用。 In this paper, a classification algorithm of ultrasonic fanny liver images is studied by Artificial Neural Network (NN). The feature extraction is based on the spatial gray-level dependence matrices (SGLDM), spatial - requency decomposition and fractal feature. Two sets of ultrasonic liver images-normal liver and abnomal liver (including light-fanny liver,moderate-fanny liver and severe- fanny liver) image are successfully classified through NN. The result shows that the NN classifier produces about 95.33% correct classification for the two sets of ultrasonic liver image and our study is considered to be helpful for practical aided-diagnosis.
作者 陈菲
出处 《微计算机信息》 北大核心 2007年第04X期302-303,278,共3页 Control & Automation
基金 国家自然科学基金(No:60274022F030112)
关键词 脂肪肝 神经网络 图像特征 灰度共生矩阵 Index Terms fatty liver, neural network, image feature, gray-level co-occurrence matrix
  • 相关文献

参考文献12

  • 1K.Ogawa,M.Fukushima,K.Kubota,and N.Hisa.,Computeraided diagnostic system for diffuse liver diseases with ultrasonography by neural network[J].IEEE Trans.Ncul.Sci.Dec.1998.vol.45,pp.3069-3074,. 被引量:1
  • 2R.M.Haralick,K.Shanmugan,and 1.H.Dinstein.Texture features for image classification[J].IEEE Trans.Syst.,Man,Cyber.1973vol.SMC-3,pp.610-621. 被引量:1
  • 3G.O.Lendaris and G.L.Stanley.Diffraction pattern sampling for automatic pattern recognition[J].Proc.IEEE.1970.vol.58,pp.198-216 被引量:1
  • 4J.S.Weszka,C.R.Dryer,and A.Rosenfeld.A comparative study of texture measures for terrain classification[J].IEEE Trans.Syst.,Man,Cybern.1976.vol.SMC-6,pp.269-285 被引量:1
  • 5K.I.Laws.Texture energy measures[J].in Proc.Image Understanding Workshop.1979.pp.47-51,. 被引量:1
  • 6W.Lee,Y.Chen,K.Hsieh.Ultrasonic Liver Tissues Classification by Fractal Feature Vector Based on M-Band Wavelet Tranform[J].IEEE Trans.Medical Imaging.2003.vol.22,no.3.pp 382-392 March, 被引量:1
  • 7Y.C.Chen and W.L.Lee.Texture classification using multiresolution fractal feature vector[J].in Proc.4th Asian Conf.Computer Vision,2000,pp204-209. 被引量:1
  • 8C.M.Wu,Y.C.Chen,and K.S.Hsieh,Texture features for classification of ultrasonic liver images[J].IEEE Trails.Med.Imag..June 1992.vol.11.pp.141-152 被引量:1
  • 9宁志刚,汪仁煌.基于BP神经网络仪器显示自动识别方法[J].微计算机信息,2006(03S):198-200. 被引量:10
  • 10Reddick W E,Glass J Q.Automated segmentation and classification ofmultispectral magnetic resonan-ce images of brain using artificial neural networks[J].IEEE Transactions on medicial Imaging,1997,16(6):911-918 被引量:1

二级参考文献2

共引文献9

同被引文献46

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部