摘要
Interaction of anionic polyelectrolyte with cationic gemini surfactant has been investigated by coarse-grained molecular dynamics simulation.Polyelectrolyte facilitates the oppositely charged ionic surfactants to aggregate by suppressing the electrostatic repulsion between ionic head groups leading to the formation of micellar complex.With addition of surfactant,the conformation of polyion chain changes from stretched to random coiled to spherical,and at the same time more free micelles are formed by surfactants in mixtures.Increasing the length of spacer or tail chain in gemini surfactant will weaken its interaction with polyelectrolyte and simultaneously strengthen its tendency to self-assemble.The simulation results are consistent with experimental observations and reveal that the electrostatic interaction plays an important role in the interaction of polyelectrolyte with gemini sur- factant.
Interaction of anionic .polyelectrolyte with cationic, gemini surfactant has been investigated by coarse-grained molecular dynamics simulation. Polyelectrolyte facilitates the oppositely charged ionic surfactants to aggregate by suppressing the electrostatic repulsion between ionic head groups leading to the formation of micellarcomplex. With addition of surfactant, the conformation of polyion chain changes from stretched to random coiled to spherical, and at the same time more free micelles are formed by surfactants in mixtures. Increasing the length ofspacer or tail chain in gemini surfactant will weaken its interaction with polyelectrolyte and simultaneously strengthen its tendency to self-assemble. The simulation results are consistent with experimental observations and reveal that the electrostatic interaction plays an important role in the interaction of polyelectrolyte with gemini surfactant.
基金
Supported by the National Natural Science Foundation of China (No.20476025), the Doctoral Research Foundation of the Ministry of Education of China (No.20050251004), E-institute of Shanghai High Institution Grid (No.200303) and Shanghai Municipal Science and Technology Commission of China (No.05DJ14002).