期刊文献+

基于ICA的快速定点算法 被引量:3

A Fast Fixed-Point Algorithm Based on ICA
下载PDF
导出
摘要 介绍了独立分量分析(ICA)的模型定义、数学原理等基本问题。在分析ICA基础上引入了固定点算法(FastICA)。FastICA算法收敛速度快,迭代次数由传统算法的2000次减少到3~10次。实验表明,FsatICA具有良好的盲源分离性能和鲁棒性。 The fundamental problems of ICA(Independent Component Analysis) about the model definition and mathematical principles are given. Based on analysis of the existing algorithms, the FastICA is introduced. The convergence speed of FastICA is fast and the times of iterations is reduced from about 2 000 to 3-10 using FastICA. Finally, the experimental results show that the FastICA has good performance for blind source separation and robustness.
出处 《电声技术》 2007年第8期47-49,共3页 Audio Engineering
关键词 负熵 独立成分分析 定点ICA 快速定点算法 对照函数 negentropy independent component analysis FastICA fast fixed-point algorithm contrast function
  • 相关文献

参考文献10

  • 1JUTTER C,HERAULT J.Blind separation of sources,Part Ⅰ:an adaptive algorithm based on neuromimatic architecture[J].Signal Processing,1991,24(1):1-10. 被引量:1
  • 2COMON P.Independent component analysis,a new concept?[J].Signal Processing,1994,36(3):287-314. 被引量:1
  • 3COMON P.Blind separation of sources,Part Ⅱ:problem statement[J].Signal Processing,1991,24(1):11-20. 被引量:1
  • 4BELL A J.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995(7):1 129-1 159. 被引量:1
  • 5LEE T W.Independent component analysis using an extended infomax algorithm for sub-Gauss and super-Gauss source[J].Neural Computation,1999,11 (2):409-433. 被引量:1
  • 6AMARI S I.New learning in structural parameter spacenatural Riemannian gradient[J].Advance in Neural Information Processing Systems,1997(9):127-133. 被引量:1
  • 7AMARI S I.Natural gradient works efficiently in learning[J].Neural Computation,1998,10 (2):251-276. 被引量:1
  • 8HYVARINEN A.Fast and robust fixed-point algorithm for independent component analysis[J].IEEE Trans.on Neural Network,1999,10(3):626-634. 被引量:1
  • 9LEE T W,GIROLAMI M,BELL A J,et al.A unifying framework for independent component analysis[J].International Journal of Computers and Mathematics with Applications,2000,39:1-21. 被引量:1
  • 10刘喜武,刘洪,李幼铭.独立分量分析及其在地震信息处理中应用初探[J].地球物理学进展,2003,18(1):90-96. 被引量:39

二级参考文献8

  • 1A Hyvarinen. Survey on independent component analysis[ J ]. Neural Computing Surveys, 1999,2:94 - 128. 被引量:1
  • 2A Hyvarinen, E Oja. Independent component analysis:Algorithm and appllcation[J]. Neural Network, 2000,13:411-430. 被引量:1
  • 3C Jutten, J Herault. Blind separation of sources, Part I: An adaptive algorithm based on neuro mimetic architecture [ J ]. Signal Processing,1991,24;1 - 10. 被引量:1
  • 4T-W Lee. Independent component analysis: Theory and Application[M]. Dordrecht ( The Netherlands) : Kluwer Academic Publisher,1998. 被引量:1
  • 5Yin-ming Cheng, Lei Xu. Independent component ordering in ICA time series analysis[ J]. Neurocomputing,2001,41 : 145 - 152. 被引量:1
  • 6A Hyvarinen, E Oja. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997,9(7):1483 - 1492. 被引量:1
  • 7W B Rossow A Chedin. Rotation of EOFs by Independent component analysis: Torwards solving the mixing problem in the deeompoaition of Geophysical time series[J]. J Atmos Sci,2002.59:111 - 123. 被引量:1
  • 8刘琚,何振亚,梅良模.一种基于ICA和过采样技术的盲反卷积方法[J].现代雷达,1998,20(4):41-45. 被引量:2

共引文献38

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部