期刊文献+

基于本体的向量空间模型的压缩算法 被引量:6

Compression algorithm for ontology based Vector Space Model
下载PDF
导出
摘要 采用本体(Ontology)为向量空间模型提供更为丰富、详细的概念空间,在本体的支持下,文档中的术语不再被孤立地看成关键词,而是彼此间有了一定的语义联系。以已获得丰富而详细的本体为前提,考虑当本体空间很大时,解决向量空间的高维数给计算带来复杂性与难度这一问题,提出基于HCA(Hierarchical Clustering Algorithm)的向量空间压缩算法。 In this paper,ontology based VSM is used to provide detailed and dependable concept space.With the support of ontology,two concepts are not standalone terms but meaning related.In this paper,the detailed and dependable ontology is the presupposition and HCA(Hierarchical Clustering Algorithm) is proposed to deal with computation complex and difficulty because of high dimensions of the vector space.
作者 袁铭蔚 蒋平
出处 《计算机工程与应用》 CSCD 北大核心 2007年第24期12-14,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant) 英国皇家学会国际合作项目(No(.2006)国科金外资助字第60611130271)
关键词 本体向量空间模型分层聚类算法语义距离 ontology Vector Space Model(VSM) Hierarchical Clustering Algorithm(HCA) semantic distance
  • 相关文献

参考文献11

  • 1wartout B S,Ramesh P,Knight K,et al.Toward distributed use of large-scale ontologies[C]//AAAI Symposium on Ontological Engineering,Stanford,1997. 被引量:1
  • 2Salton G.Introduction to modern information retrieval[M].[S.l.]:McGraw-Hill,1983. 被引量:1
  • 3Khan L,Luo F.Ontology construction for information selection[C]//Proceedings of 14th IEEE international conference on tools with artificial intelligence(ICTAI 2002),2002:122-127. 被引量:1
  • 4López M F,Gómez-Pérez A,Sierra J P,et al.Building a chemical ontology using METHONTOLOGY and the ontology design environment[J].IEEE Intelligent Systems and their applications,1999,4(1):37-46. 被引量:1
  • 5Lammari N,Metais E.Building and maintaining ontologies:a set of algorithms[J].Data and Knowledge Engineering,2004,48:155-176. 被引量:1
  • 6Castells P,Ferna'ndez M,Vallet D.An adaptation of the vectorspace model for ontology-based information retrieval[J].IEEE Transactions on Knowledge and Data Engineering,2007,19(2):261-272. 被引量:1
  • 7Jiang P,Mair Q.A self-organizational management network based on adaptive resonance theory,agent technologies,infrastructures,tools,and applications for e-services[M].[S.l.]:Springer,2003:211-225. 被引量:1
  • 8Baeza-Yates R,Ribeiro-Neto B.Modern information retrieval[M].[S.l.]:ACM Press,1999. 被引量:1
  • 9Chen R C.Using recursive ART network to construction domain ontology based on term frequency and inverse document frequency[C]//Expert Systems with Applications(2006),doi:10.1016/j.eswa,2006-09. 被引量:1
  • 10Staab S,Schnurr H P,Studer R,et al.Knowledge processes and ontologies[J].IEEE Intelligent Systems,2001,16(1):26-34. 被引量:1

二级参考文献10

  • 1Fodor I K.A Survey of Dimension Reduction Techniques[R].LLNL technical report,UCRL-ID-148494,http://www.llnl.gov/CASC/sapphire/pubs.html,2002 被引量:1
  • 2J Lin,D Gunopulos.Dimensionality Reduction by Random Projection and Latent Semantic Indexing[C].In:Text Mining Workshop,at the 被引量:1
  • 3rd SIAM International Conference on Data Mining,20033.Kaski S.Dimensionality Reduction by Random Mapping:Fast Similarity Computation for Clustering[C].In:Proceedings of International Joint Conference on Neural Networks(IJCNN'98),IEEE Service Center,Piscataway,NJ,1998:413~418 被引量:1
  • 4Bingham E,Mannila H.Random Projection in Dimensionality Reduction:Applications to Image and Text Data[C].In:Proc SIGKDD(2001),2001:245~250 被引量:1
  • 5Lee D,Seung H.Algorithms for Non-negative Matrix Factorization[C].In:Adv Neural Info Proc Syst,2001 ;13:556~562 被引量:1
  • 6Lee D,Seung H.Learning the Parts of Objects by Nonnegative Matrix Factorization[J].Nature,1999;401 (21):788~791 被引量:1
  • 7George Karypis,Eui-Hong(Sam) Han.Concept Indexing:A Fast Dimensionality Reduction Algorithm with Applications to Document Retrieval & Categorization[C].In:ACM CIKM Conference,2000 被引量:1
  • 8S Dumais,G Furnas,T Landauer et al.Using Latent Semantic Analysis to Improve Access to Textual Information[C].In:Proceedings of the Conference on Human Factors in Computing Systems CHI'88,Washington,DC,USA,1988 被引量:1
  • 9Inderjit S D,Dharmendra S M.Concept Decompositions for Large Sparse Text Data using Clustering[J].Machine Learning,2001 ;42(1):143~175 被引量:1
  • 10刘少辉,董明楷,张海俊,李蓉,史忠植.一种基于向量空间模型的多层次文本分类方法[J].中文信息学报,2002,16(3):8-14. 被引量:75

共引文献15

同被引文献36

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部