期刊文献+

车桥耦合系统的非线性动力分析 被引量:24

NONLINEAR DYNAMIC ANALYSIS OF VEHICLE-BRIDGE COUPLED INTERACTION SYSTEM
下载PDF
导出
摘要 研究了车桥耦合系统的非线性动力特性。基于哈密尔顿能量原理和欧拉-贝努利梁假设,考虑梁的几何非线性影响,建立了移动振动车辆模型下桥梁的耦合非线性振动方程,应用伽辽金法和Runge-Kutta法对方程进行求解,算例中探讨了车辆质量、车速、桥梁阻尼和桥跨径等参数对车-桥耦合系统非线性振动性能的影响。 The nonlinear dynamic behaviors of vehicle-bridge coupled interaction system were investigated. Based on the Hamilton principle and the hypothesis of Euler-Bernoulli beam, the systematic nonlinear vibration equations of vehicle-bridge coupled interaction were derived. The nonlinear dynamic equations were solved by using Galerkin and Runge-Kutta methods. The influences of vehicle mass, vehicle velocity, bridge damping, bridge span on vehicle-bridge coupled nonlinear vibration behaviors were discussed.
出处 《振动与冲击》 EI CSCD 北大核心 2007年第8期104-108,共5页 Journal of Vibration and Shock
关键词 车桥耦合 移动荷载 非线性振动 RUNGE-KUTTA法 vehicle-bridge coupled interaction, moving load, nonlinear vibration, runge-kutta method
  • 相关文献

参考文献11

二级参考文献20

  • 1袁晓彬.[D].同济大学工程力学与技术系,1999. 被引量:1
  • 2.数值分析基础[M].上海:同济大学出版社,1998.279--291. 被引量:1
  • 3张庆.[D].同济大学,2000. 被引量:1
  • 4Chatterjee P K, Datta T K et al. Vibration of continuous bridges under moving vehicles, Journal of Sound and Vibration. 1994, 169(5) :619--632. 被引量:1
  • 5Andersen L, Nielsen S R K, Iwankiewicz R. Vehicle moving along an infinite beam with random surface irregularities on a Kelvin foundation, Journal of Applied Mechanics. Jan. 2002,69---75. 被引量:1
  • 6Tsao T C, Tan C A, Pesterev A, Yang B G, Lawerence A. Control oriented formulation for structruces interactingwith moving loads[C]. Proceedings of the American Control Conference, Arlington, VA June 25 - 27, 2001,441 - 446. 被引量:1
  • 7Chatterjee P K, Datta T K, Surana C S. Vibration of continuous bridges under moving vehicles [J]. India, Journal of Sound and Vibratoin, 1994, 169(5):619-632. 被引量:1
  • 8Zheng D Y, Cheng Y K, Au F T, Cheng Y S. Vibration of multi span non uniform beams under moving loads by using modified beam vibration functions [J]. Journal of Sound and Vibration, 1998, 212, 455- 467. 被引量:1
  • 9Coussy O, Said M, Hoove J P Y. The influence of random surface irregularities on the dynamic response of bridges under suspended moving loads [J]. Journal of Sound and Vibration, 1989,130,313-320. 被引量:1
  • 10Inglis C E. A Mathematical Treatise on Vibration in Railway Bridges .Cambridge:Cambridge University Press [M]. 1934,1-30. 被引量:1

共引文献102

同被引文献294

引证文献24

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部