期刊文献+

人工神经网络在冻土水盐空间变异与条件模拟中的应用比较 被引量:12

Application and comparison research of artificial neural network on conditional simulation and space variability of water-salt for frozen earth
下载PDF
导出
摘要 该文利用人工神经网络的BP模型建立了具有类似普通Kriging(OK)法和条件模拟(CS)运算目标的人工神经Kriging(NK)方法,在黄河河套平原进行了耕地和盐荒地初冻期、最大冻深期和融通期土壤水盐时空变异性的模拟和估值,通过NK法与OK法、CS法模拟、估值、检验结果及3种方法的理论变异函数、统计参数与实验变异函数的对比,结果表明NK法在消除滑动平均影响方面优于OK法,并以类似于CS法的空间变异性进行模拟,而且NK法有自身独特的优点,它不需要协方差函数的估计和变异函数的推求,对于含有一定特异值和一维到三维空间的扩展有更强的适应性,是对空间变异性应用研究方法的一种补充,同时拓宽了ANN的应用领域,具学科融合的优势。 Neural Kriging(NK) model was established by BP model of artificial neural network, which possesses the similarity of operational objectives to ordinary Kriging(OK) and Conditional Simulation(CS). The NK model was a pplied to study the space variability of water-salt distribution during soil freezing and thawing periods-the freezing period, the maximum freezing depth period and thawing period in the cropland and non-cropland by simulating and testing sampling points and estimating unknown points. Comparing simulation, test and esti- mation results of NK model with that of OK model and conditional simulation and comparing semi-variogram of NK model with that of sampling value, OK estimated value and CS value. Results show that the NK method is better than OK method in eliminating moving-average effects. Furthermore, the NK method has itself particular advantages that do not require estimation of covariance function and semi-variogram treatment. At the same time, it has reasonably accurate estimation of prediction. So this method has more flexible adaptability for unique value and extend from one-dimensional to three-dimensional space than OK and CS method. And this method is a complement method for application of traditional space variability research. At the same time, it will broaden applied fields of artificial neural network (ANN) theory and has advantages of discipline interfusion.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2007年第7期48-53,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金(50179013) 内蒙古自治区自然科学基金项目(200408020519)
关键词 冻土水盐 空间变异性 人工神经网络 条件模拟 water and salt of frozen earth space variability artificial neural network conditional simulation
  • 相关文献

参考文献15

  • 1Paulin Coulibaly,Francois Anctil,Ramon Aravena,et al.Artificial neural network modeling of water table depth fluctions[J].Water Resources Research,2001,37(4):885-896. 被引量:1
  • 2David A,Cromley,Robert G.Artificial neural networks as a method of spatial interpolation for digital elevation models[J].Cartography and Geographic Information Science,2003,29(2),99-110. 被引量:1
  • 3Yeten B,Gumrah F.The use of fractal geostatistics and artificial neural networks for carbonate reservoir characterization[J].Transport in Porous Media,2000,41:173-195. 被引量:1
  • 4Donna M.Rizzo,David E.Dougherty.Characterization of aquifer properties using artificial neural networks:neural kriging[J].Water Resources Research,1994,30(2):483-497. 被引量:1
  • 5Aziz A R A,Wong K F V.A neural-network approach to the determination of aquifer parameters[J ].Ground Water,1992,30(2):164-166. 被引量:1
  • 6Dowd P A,Pardo-Iguzquiza E.Estimating the boundary surface between geologic formations from 3D seismic data using networks and geostatistics[J].Geophysics,2005,70(1):1-11. 被引量:1
  • 7屈忠义..基于人工神经网络理论的区域水—土(盐)环境预测研究[D].内蒙古农业大学,2003:
  • 8刘全明,陈亚新,魏占民,屈忠义,赵培清.基于人工智能计算技术的区域性土壤水盐环境动态监测[J].农业工程学报,2006,22(10):1-6. 被引量:13
  • 9张仁铎著..空间变异理论及应用[M].北京:科学出版社,2005:188.
  • 10侯景儒 尹镇南 李维明 等.实用地质统计学[M].北京:地质出版社,1998.. 被引量:178

二级参考文献25

共引文献260

同被引文献239

引证文献12

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部