期刊文献+

结构光截面轮廓测量中激光条纹的处理 被引量:1

Laser Stripe Processing in Measurement System Based on Structured-light
下载PDF
导出
摘要 在结构光测量系统中需要对采集到的激光条纹图像进行有效处理。该文提出了一种基于差图像的阈值分割方法,应用该方法对采集到的激光条纹图像进行阈值分割从而得到二值激光条纹图像,利用神经网络对二值激光条纹图像进行细化处理,处理过的细化条纹图像满足0.5%的精度要求,图像二值化处理时间不到1s,细化过程的时间小于2s,相对传统的图像处理时间有所增加,已经成功地应用在物体三维重建时特征参数匹配的预处理中。 The laser stripe image gathered in the structured light measurement system is needed to be processed effectively. A threshold segmentation method based on the difference image is put forward, which is used to segment the laser stripe image and a two-value image is obtained, then neural network is applied to process the two-value laser stripe image to get the thinning stripe. The processed thinning stripe satisfies the requirement that the precision is 0.05%, the two-value processing time is no more than one second and that of the thinning is less than two seconds. The time increased compared to traditional methods and the result has already been applied to the pre-processing of feature parameter matching in the object 3D reconstruction successfully.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第16期162-163,共2页 Computer Engineering
基金 国家自然科学基金资助项目(60572030) 教育部博士学科点专项科研基金资助项目(20050214006) 黑龙江省教育厅海外学者资助项目(1055HZ027) 哈尔滨市重点科技攻关计划资助项目(2005AA1CG152)
关键词 激光条纹 阈值分割 神经网络 细化 laser stripe threshold segmentation neural network thinning
  • 相关文献

参考文献5

  • 1戴强..结构光三维视觉测量系统标定方法研究[D].哈尔滨理工大学,2005:
  • 2罗希平,田捷,诸葛婴,王靖,戴汝为.图像分割方法综述[J].模式识别与人工智能,1999,12(3):300-312. 被引量:232
  • 3王家隆,郭成安.一种适于串行机实现的图像并行细化算法[J].中国图象图形学报(A辑),2004,9(1):112-117. 被引量:3
  • 4Ge Yaorong,Michael J.Fitzpatrick on the Generation of Skeletons from Discrete Euclidean Distance Maps[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1996,18(11):1055-1066. 被引量:1
  • 5Park S B,Lee J W,Kim S K Content-based Image Classification Using a Neural Network[J].Patten Recognition Lerrers,2004,25(3):287-300. 被引量:1

二级参考文献22

  • 1Marr D.视觉计算理论[M].北京:科学出版社,1988.51-80. 被引量:9
  • 2Chin R T, Wan H K, Stover D L, et al. A one-pass thinning algorithm and its parallel implementation[J]. Computer Vision Graphics Image Processing, 1987, 40(1) : 30-40. 被引量:1
  • 3Hall R W. Optimally small operator supports for fully parallel thinning algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(8): 828-833. 被引量:1
  • 4Pavlidis T. Algorithms for graphics and image processing[M].Rockville, Washington D C, USA: Computer Science Press,1982. 被引量:1
  • 5Zhang T Y, Suen C Y. A fast thinning algorithm for thinning digital patterns[J]. Communications of ACM, 1984,27(3) :236-239. 被引量:1
  • 6GUO Zicheng, Richard W H. Parallel thinning with twosuBiteration algorithms[J]. Communications of ACM, 1989,32(3):359-373. 被引量:1
  • 7Zhu S C,International Conference on COmputer Vision,1998年,847页 被引量:1
  • 8Liang P,Proceeding of the International Conference on Computer Vision,1998年,193页 被引量:1
  • 9Wang J P,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,8期,619页 被引量:1
  • 10Wang Y P,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,10期,1040页 被引量:1

共引文献233

同被引文献15

引证文献1

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部