期刊文献+

无线传感器网络下的粒子滤波分布式目标跟踪算法 被引量:1

Distributed Target Tracking Algorithm Based on Particle Filtering in Wireless Sensor Networks
下载PDF
导出
摘要 针对无线传感器网络环境下的机动目标跟踪问题,提出了一种描述目标机动加速度的目标状态空间模型,以此模型为基础开发出基于粒子滤波的单目标和多目标跟踪算法.基本思想是:在状态空间中通过寻找一组传播的随机样本来获得近似后验概率分布,并以样本均值代替积分运算,从而求得最小状态方差估计.仿真结果表明,所提算法可以较好地解决无线传感器网络环境下的机动目标跟踪问题,速度跟踪精度、机动加速度跟踪精度均较经典分布式粒子滤波算法分别提高20%、27%. Focusing on the maneuvering target tracking problem in wireless sensor networks, a state space model for describing the maneuvering target acceleration is proposed. On the basis of the model, single and multiple target tracking algorithms based on particle filtering are developed, in which the approximate posterior probability distribution is acquired through searching a set of transmitted random samples in the state space, and the integral operation is replaced by sample's average value so as to obtain the minimum variance estimation. Simulation results show that in wireless sensor network environment, the maneuvering target tracking problem can be solved better by the proposed algorithm. The precision of velocity tracking and maneuvering tracking acceleration is increased by about 27 % and 20% respectively compared to the traditional particle filtering algorithms.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第8期912-916,共5页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2005AA121130)
关键词 传感器网络 目标跟踪 粒子滤波算法 sensor network target tracing particle filter algorithm
  • 相关文献

参考文献6

  • 1Coates M.Distributed particle filters for sensor networks[C]//3rd International Conference on Information Processing in Sensor Networks.Palo Alto,USA:Springer Press,2004:99-107. 被引量:1
  • 2Shin J,Guibas L,Feng Zhao.A distributed algorithm for managing multi-target identities in wireless ad-hoc sensor networks[C]//Proceedings of 2nd Workshop on Information Processing in Sensor Networks.Palo Alto,USA:Springer Press,2003:223-238. 被引量:1
  • 3Sheng Xiaohong,Yu Henhu.Sequential acoustic energy based source localization using particle filter in a distributed sensor network[C]//IEEE International Conference on Acoustics,Speech,and Signal Processing.Piscataway,USA:IEEE,2004:961-972. 被引量:1
  • 4Kim W Y,Mechitov K.On target tracking with binary proximity sensors[C]//4th International Conference on Information Processing Sensor Networks.Piscataway,USA:IEEE,2005:125-129. 被引量:1
  • 5Mechitov K,Sundresh S,Kwon Y,el at.Cooperative tracking with binary-detection sensor networks[C]//Proceedings of the 1st International Conference on Embedded Networked Sensor Systems.New York:ACM Press,2003:332-333. 被引量:1
  • 6Chen Weipeng,Hou J C,Liu Sba.Dynamic clustering for acoustic target tracking in wireless sensor networks[C]//Proceedings of IEEE International Conference on Network Protocols.Piscataway,USA:IEEE,2003:284-294. 被引量:1

同被引文献6

  • 1杜正聪 ,王军 ,冯良豪 .粒子滤波中建议分布的选择[J].河北师范大学学报(自然科学版),2005,29(3):257-261. 被引量:3
  • 2Gordon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J]. IEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107- 113. 被引量:1
  • 3Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo Localization for Mobile Robots[J]. Artificial Intelligence, 2001, 128, (1/2): 99-141. 被引量:1
  • 4Doucet A, Godsill S J, Andrieu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[J]. Statistics and Computing, 2000, 10(3): 197-208. 被引量:1
  • 5Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(20) 174-188. 被引量:1
  • 6Chen Zhe. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond[D]. Hamilton, Canada: McMaster University, 2003. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部