期刊文献+

夹层梁脱层与裂纹检测试验的小波分析 被引量:1

Wavelet Analysis of the Experiment of Debond and Crack Detection for Composite Sandwich Beam
下载PDF
导出
摘要 探索采用小波分析方法,对FRP(玻璃钢)夹层梁的脱层损伤和裂纹损伤检测分别进行试验研究。利用智能结构技术监测夹层梁结构的应变响应信号,对应变响应信号进行复一阶高斯小波变换,通过分析小波变换系数中包含的奇点特征,对梁上的损伤信息进行了有效的识别,监测结构的损伤状况。研究了脱层损伤和裂纹损伤发生在不同损伤程度时的小波变换方法识别。研究表明,本文方法对有效地监测FRP夹层梁是否存在损伤,损伤类型,损伤位置以及损伤程度的定量判定,均能提供较好的参考价值。 Wavelet theory was used to monitor the debond and crack damage in an FRP (fiberglass-reinforced plastics) composite sandwich beam respectively. An intelligent structure technology is used to monitor the strain response signals from a sandwich beam, and then the first order complex Guassian wavelet transform is applied to study the strain response signals. By analyzing the singularity characteristics of the wavelet transform coefficients, the damage can be identified effectively. Various damage types of different sizes and in different positions were studied, which proves the validity of using wavelet analysis to identify whether there is a damage, what is the type of the damage, where the damage is and what is the size of the damage.
出处 《实验室研究与探索》 CAS 2007年第7期15-19,37,共6页 Research and Exploration In Laboratory
基金 国家自然科学基金(50479014)
关键词 损伤检测 小波分析 智能结构 夹层梁 : damage monitoring wavelet analysis intelligent structure sandwich beam
  • 相关文献

参考文献10

二级参考文献27

  • 1姚熊亮,顾玉钢,杨志国.压电类智能结构在船体振动控制方面的应用研究[J].哈尔滨工程大学学报,2004,25(6):695-699. 被引量:10
  • 2余音,振动工程学报,1998年 被引量:1
  • 3余音,博士学位论文,1996年 被引量:1
  • 4Nayfeh A H, Sanchez N F. Stability and complicated rolling responses of ships in regular beam seas [J].International Shipbuilding Progress, 1990, 37 (412):331-352. 被引量:1
  • 5Wong L A, Chen J C. Nonlinear and chaotic behavior of structural system investigated by wavelet transform techniques [J]. International Journal of Non-Linear Mechanics, 2001, 36(2) :221-235. 被引量:1
  • 6Gouttebroze S, Lardies. On using the wavelet transform in modal analysis [J]. Mechanics Research Communications, 2001, 28(5):561-569. 被引量:1
  • 7Ghanem R, Romeo F. A wavelet-based approach for model and parameter identification of non-linear systems [J]. International Journal of Non-Linear Mechanics, 2001, 36(5) :835-859. 被引量:1
  • 8Chui C K. An introduction to wavelets [M]. San Diego: Academic Press, 1992. 49-74. 被引量:1
  • 9Newland D E. Wavelet analysis of vibration. Part 1.Theory [J]. J Vibration and Acoustics, 1994, 116(3) :409-416. 被引量:1
  • 10Tanizawa K. An application of fully nonlinear numerical wave tank to the study of chaotic roll motions [J]. International Journal of Offshore and Polar Engineering, 1999, 9(2):90-96. 被引量:1

共引文献9

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部