期刊文献+

Representation of classifier distributions in terms of hypergeometric functions

Representation of classifier distributions in terms of hypergeometric functions
原文传递
导出
摘要 This paper derives alternative analytical expressions for classifier product distributions in terms of Gauss hypergeometric function, 2F1, by considering feed distribution defined in terms of Gates-Gaudin-Schumann function and efficiency curve defined in terms of a logistic function. It is shown that classifier distributions under dispersed conditions of classification pivot at a common size and the distributions are difference similar. The paper also addresses an inverse problem of classifier distributions wherein the feed distribution and efficiency curve are identified from the measured product distributions without needing to know the solid flow split of particles to any of the product streams. This paper derives alternative analytical expressions for classifier product distributions in terms of Gauss hypergeometric function, 2F1, by considering feed distribution defined in terms of Gates-Gaudin-Schumann function and efficiency curve defined in terms of a logistic function. It is shown that classifier distributions under dispersed conditions of classification pivot at a common size and the distributions are difference similar. The paper also addresses an inverse problem of classifier distributions wherein the feed distribution and efficiency curve are identified from the measured product distributions without needing to know the solid flow split of particles to any of the product streams.
作者 B.Venkoba Rao
出处 《China Particuology》 SCIE EI CAS CSCD 2007年第4期274-283,共10页
关键词 CLASSIFIER Efficiency curve Inverse problem Classifier Efficiency curve Inverse problem
  • 相关文献

参考文献10

  • 1Abramowitz, M,& Stegun, I. A.Handbook of mathematical func-tions with formulas, graphs and mathematical tables[]..1972 被引量:1
  • 2Austin, L. G,Klimpel, R. R,& Luckie, P. T.Process engineering ofsize reduction: Ball milling[]..1984 被引量:1
  • 3Fuerstenau, M. C,& Han, K. N.Principles of mineral processing[]..2003 被引量:1
  • 4Heiskanen,K.Particle classi?cation[]..1993 被引量:1
  • 5Kapur, P. C,& Mehrotra, S. P.Estimation of ?otation-rate distribu-tions by numerical inversion of Laplace transform[].Chemical EngineeringScience.1974 被引量:1
  • 6Kawatra, S. K,& Seitz, R. A.Calculating the particle size distributionin a hydrocyclone over?ow product for simulation purposes[].Minerals &Metallurgical Processing.1985 被引量:1
  • 7Kelly,E. G.The significance of by-pass in mineral separators[].MineralsEngineering.1991 被引量:1
  • 8Kelly, E. G,& Spottiswood, D. J.Introduction to mineral processing[]..1982 被引量:1
  • 9King,R. P.Modeling and simulation of mineral processing systems[]..2001 被引量:1
  • 10Kraipech, W,Chen, W,Parma, F. J,& Dyakowski, T.Modeling thefish-hook effect of the ?ow within hydrocyclones[].International Journal ofMineral Processing.2002 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部